首页> 外文会议>2014 IEEE Workshop on Electronics, Computer and Applications >MRPrePost—A parallel algorithm adapted for mining big data
【24h】

MRPrePost—A parallel algorithm adapted for mining big data

机译:MRPrePost-一种适用于挖掘大数据的并行算法

获取原文
获取原文并翻译 | 示例

摘要

With the explosive growth in data, using data mining techniques to mine association rules, and then to find valuable information hidden in big data has become increasingly important. Various existing data mining techniques often through mining frequent itemsets to derive association rules and access to relevant knowledge, but with the rapid arrival of the era of big data, Traditional data mining algorithms have been unable to meet large data's analysis needs. In view of this, this paper proposes an adaptation to the big data mining parallel algorithms—MRPrePost. MRPrePost is a parallel algorithm based on Hadoop platform, which improves PrePost by way of adding a prefix pattern, and on this basis into the parallel design ideas, making MRPrePost algorithm can adapt to mining large data's association rules. Experiments show that MRPrePost algorithm is more superior than PrePost and PFP in terms of performance, and the stability and scalability of algorithms are better.
机译:随着数据的爆炸性增长,使用数据挖掘技术来挖掘关联规则,然后找到隐藏在大数据中的有价值的信息变得越来越重要。现有的各种数据挖掘技术经常通过挖掘频繁的项目集来获得关联规则并获取相关知识,但是随着大数据时代的到来,传统的数据挖掘算法已无法满足大数据的分析需求。有鉴于此,本文提出了一种适用于大数据挖掘并行算法MRPrePost的方法。 MRPrePost是基于Hadoop平台的并行算法,它通过添加前缀模式对PrePost进行了改进,并在此基础上引入了并行设计思想,使得MRPrePost算法可以适应挖掘大数据的关联规则。实验表明,MRPrePost算法在性能上优于PrePost和PFP,并且算法的稳定性和可扩展性更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号