首页> 外文会议>2014 IEEE Symposium on Computational Intelligence in Big Data >Increasing big data front end processing efficiency via locality sensitive Bloom filter for elderly healthcare
【24h】

Increasing big data front end processing efficiency via locality sensitive Bloom filter for elderly healthcare

机译:通过位置敏感的Bloom过滤器提高老年人护理的大数据前端处理效率

获取原文
获取原文并翻译 | 示例

摘要

In support of the increasing number of elderly population, wearable sensors and portable mobile devices capable of monitoring, recording, reporting and alerting are envisaged to enable them an independent lifestyle without relying on intrusive care programmes. However, the big data readings generated from the sensors are characterized as multidimensional, dynamic and non-linear with weak correlation with observable human behaviors and health conditions which challenges the information transmission, storing and processing. This paper proposes to use Locality Sensitive Bloom Filter to increase the Instance Based Learning efficiency for the front end sensor data pre-processing so that only relevant and meaningful information will be sent out for further processing aiming to relieve the burden of the above big data challenges. The approach is proven to optimize and enhance a popular instance-based learning method benefits from its faster speed, less space requirements and is adequate for the application.
机译:为了支持不断增长的老年人口,人们设想了可监视,记录,报告和警报的可穿戴式传感器和便携式移动设备,使他们能够独立生活,而无需依靠侵入式护理计划。但是,从传感器产生的大数据读数具有多维,动态和非线性的特征,与可观察到的人类行为和健康状况的相关性较弱,这对信息的传输,存储和处理构成了挑战。本文提出使用局部敏感布隆过滤器提高前端传感器数据预处理的基于实例的学习效率,以便仅发送有意义和有意义的信息以进行进一步处理,以减轻上述大数据挑战的负担。 。事实证明,该方法可以优化和增强一种流行的基于实例的学习方法,该方法得益于其更快的速度,更少的空间需求,并且适合于应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号