首页> 外文会议>2014 IEEE Joint Intelligence and Security Informatics Conference >ALPD: Active Learning Framework for Enhancing the Detection of Malicious PDF Files
【24h】

ALPD: Active Learning Framework for Enhancing the Detection of Malicious PDF Files

机译:ALPD:增强恶意PDF文件检测的主动学习框架

获取原文
获取原文并翻译 | 示例

摘要

Email communication carrying malicious attachments or links is often used as an attack vector for initial penetration of the targeted organization. Existing defense solutions prevent executables from entering organizational networks via emails, therefore recent attacks tend to use non-executable files such as PDF. Machine learning algorithms have recently been applied for detecting malicious PDF files. These techniques, however, lack an essential element - they cannot be updated daily. In this study we present ALPD, a framework that is based on active learning methods that are specially designed to efficiently assist anti-virus vendors to focus their analytical efforts. This is done by identifying and acquiring new PDF files that are most likely malicious, as well as informative benign PDF documents. These files are used for retraining and enhancing the knowledge stores. Evaluation results show that in the final day of the experiment, Combination, one of our AL methods, outperformed all the others, enriching the anti-virus's signature repository with almost seven times more new PDF malware while also improving the detection model's performance on a daily basis.
机译:带有恶意附件或链接的电子邮件通信通常被用作目标组织的初始渗透的攻击媒介。现有的防御解决方案阻止可执行文件通过电子邮件进入组织网络,因此最近的攻击倾向于使用不可执行的文件,例如PDF。机器学习算法最近已应用于检测恶意PDF文件。但是,这些技术缺乏必要的要素-无法每天更新。在本研究中,我们介绍ALPD,这是一个基于主动学习方法的框架,该框架经过专门设计,可以有效地帮助反病毒供应商集中精力进行分析。这是通过识别和获取最有可能是恶意的新PDF文件以及内容丰富的良性PDF文档来完成的。这些文件用于重新培训和增强知识库。评估结果表明,在实验的最后一天,我们的AL方法之一“组合”优于其他所有方法,使用几乎新的七倍多的PDF恶意软件丰富了防病毒签名库,同时每天还提高了检测模型的性能。基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号