【24h】

Parallel Sub-structuring Methods for Solving Sparse Linear Systems on a Cluster of GPUs

机译:在GPU集群上求解稀疏线性系统的并行子构造方法

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this work consists in analyzing sub-structuring method for the parallel solution of sparse linear systems with matrices arising from the discretization of partial differential equations such as finite element, finite volume and finite difference. With the success encountered by the general-purpose processing on graphics processing units (GPGPU), we develop an hybrid multi GPUs and CPUs sub-structuring algorithm. GPU computing, with CUDA, is used to accelerate the operations performed on each processor. Numerical experiments have been performed on a set of matrices arising from engineering problems. We compare C+MPI implementation on classical CPU cluster with C+MPI+CUDA on a cluster of GPU. The performance comparison shows a speed-up for the sub-structuring method up to 19 times in double precision by using CUDA.
机译:这项工作的主要目的在于分析稀疏线性系统的并行解的子构造方法,该矩阵具有由偏微分方程(如有限元,有限体积和有限差)离散化而产生的矩阵。随着图形处理单元(GPGPU)上通用处理遇到的成功,我们开发了混合的多GPU和CPU子构造算法。具有CUDA的GPU计算可用于加速在每个处理器上执行的操作。已经对由于工程问题而产生的一组矩阵进行了数值实验。我们将传统CPU集群上的C + MPI实现与GPU集群上的C + MPI + CUDA进行了比较。性能比较表明,使用CUDA可以使子构造方法的速度提高两倍,达到19倍的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号