首页> 外文会议>2013 US National Committee of URSI National Radio Science Meeting >Lightsabers (“laster swords”) for improving photodetector speed and responsivity
【24h】

Lightsabers (“laster swords”) for improving photodetector speed and responsivity

机译:光剑(“长剑”),用于提高光电探测器的速度和响应能力

获取原文
获取原文并翻译 | 示例

摘要

The micrometer scale of optics is significantly larger than the nanometer scale of modern electronic devices. To produce photodiodes yielding both superior speed and responsivity, a critical challenge is to confine the incident light efficiently to an active region having a small (subwavelength) area. In recent years, plasmonics has been applied as a means to confine light to subwavelength areas. In this case, the plasmonic structure converts the incident (far-field) light into near fields in order to achieve the sub-wavelength confinement. However, the surface plasmons are a near-field phenomenon such that the electromagnetic energy does not penetrate deeply. Further, surface plasmon resonances are generated only over narrow range of frequencies. Thus, the question arises: can we avoid the conversion to near fields and propagate the light into the semiconductor over a sub-wavelength area? When desired, can we propagate broadband electromagnetic energy into the sub-wavelength area to provide efficient broadband photodiodes? The latter may especially be desirable if the common silicon semiconductor is replaced with a more broadband semiconductor such as graphene. Here, it is proposed that a propagating sub-wavelength beam of light called a photonic nanojet and resembling a lightsaber or “laser sword” can be used to focus light onto the small active area of a photodiode. Exploratory three-dimensional, Maxwell's equations finite-difference time-domain (FDTD) simulations are conducted and demonstrate that the nanojets can confine light to an area comparable to a nanostructured dipole antenna while propagating multiple wavelengths into the semiconductor, even over a broad range of frequencies when desirable.
机译:光学器件的微米级显着大于现代电子设备的纳米级。为了产生同时具有优异的速度和响应性的光电二极管,关键的挑战是将入射光有效地限制在具有小(亚波长)面积的有源区中。近年来,等离激元学已被用作将光限制在亚波长区域的一种手段。在这种情况下,等离子体结构将入射光(远场)转换为近场,以实现亚波长限制。但是,表面等离子体激元是近场现象,因此电磁能不会深入。此外,表面等离子体激元共振仅在狭窄的频率范围内产生。因此,出现了一个问题:我们能否避免转换为近场并将光在亚波长范围内传播到半导体中?如果需要,是否可以将宽带电磁能传播到亚波长区域中,以提供有效的宽带光电二极管?如果用更宽的半导体(例如石墨烯)代替普通的硅半导体,则后者可能尤其理想。在此提出,可以使用传播的称为光子纳米射流的亚波长光束,类似于光剑或“激光剑”,将光束聚焦到光电二极管的小有源区域上。进行了探索性的三维麦克斯韦方程组的时域有限差分(FDTD)模拟,并证明了纳米射流可以将光限制在与纳米结构偶极子天线相当的区域,同时可以将多种波长传播到半导体中,甚至在很宽的范围内。频率(如果需要)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号