首页> 外文会议>2013 International Conference of Soft Computing and Pattern Recognition >A genetic-based approach for discovering pathways in protein-protein interaction networks
【24h】

A genetic-based approach for discovering pathways in protein-protein interaction networks

机译:在蛋白质-蛋白质相互作用网络中发现途径的基于遗传的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an approach of using the genetic algorithm for orienting protein-protein interaction networks (PPIs) and discovering pathways. Biological pathways such as metabolic or signaling ones play an important role in understanding cell activities and evolution. A cost-effective method to discover such pathways is analyzing accumulated information about protein-protein interactions, which are usually given in forms of undirected networks or graphs. Previous findings show that orienting protein interactions can improve pathway discovery. However, assigning orientation for protein interactions is a combinatorial optimization problem which has been proved to be NP-hard, making it critical to develop efficient algorithms. For our proposal, we first study the mathematical model of the problem. Then, based on this model, a genetic algorithm is designed to find the solution for the problem. We conducted multiple runs on the data of yeast PPI networks to test the best option for the problem. The preliminary results were compared with the results of the random search algorithm, which was shown to the best in dealing with this problem, in terms of the run time, fitness function values, especially the ratio of gold standard pathways. The findings show that our genetic-based approach addressed this problem better than the random search algorithm did.
机译:本文介绍了一种使用遗传算法定向蛋白质-蛋白质相互作用网络(PPI)和发现途径的方法。诸如代谢或信号传导等生物途径在理解细胞活动和进化中起着重要作用。发现此类途径的一种经济有效的方法是分析有关蛋白质间相互作用的累积信息,这些信息通常以无向网络或图形的形式给出。先前的发现表明,定向蛋白质相互作用可以改善途径发现。但是,为蛋白质相互作用指定方向是一个组合优化问题,已被证明是NP难的,因此开发高效算法至关重要。对于我们的建议,我们首先研究问题的数学模型。然后,基于该模型,设计了一种遗传算法来找到问题的解决方案。我们对酵母PPI网络的数据进行了多次运行,以测试该问题的最佳选择。将初步结果与随机搜索算法的结果进行比较,该结果在运行时间,适应度函数值(尤其是金标准途径的比例)方面表现出最佳的处理效果。研究结果表明,我们的基于遗传的方法比随机搜索算法更好地解决了这个问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号