首页> 外文会议>2013 IEEE Workshop on Applications of Computer Vision. >SAGE: An approach and implementation empowering quick and reliable quantitative analysis of segmentation quality
【24h】

SAGE: An approach and implementation empowering quick and reliable quantitative analysis of segmentation quality

机译:SAGE:一种方法和实施方法,可以对分割质量进行快速可靠的定量分析

获取原文
获取原文并翻译 | 示例

摘要

Finding the outline of an object in an image is a fundamental step in many vision-based applications. It is important to demonstrate that the segmentation found accurately represents the contour of the object in the image. The discrepancy measure model for segmentation analysis focuses on selecting an appropriate discrepancy measure to compute a score that indicates how similar a query segmentation is to a gold standard segmentation. Observing that the score depends on the gold standard segmentation, we propose a framework that expands this approach by introducing the consideration of how to establish the gold standard segmentation. The framework shows how to obtain project-specific performance indicators in a principled way that links annotation tools, fusion methods, and evaluation algorithms into a unified model we call SAGE. We also describe a freely available implementation of SAGE that enables quick segmentation validation against either a single annotation or a fused annotation. Finally, three studies are presented to highlight the impact of annotation tools, an-notators, and fusion methods on establishing trusted gold standard segmentations for cell and artery images.
机译:在许多基于视觉的应用程序中,找到图像中对象的轮廓是基本步骤。重要的是要证明找到的分割准确地代表了图像中对象的轮廓。用于细分分析的差异测度模型着重于选择适当的差异测度以计算分数,该分数指示查询细分与黄金标准细分的相似程度。观察到分数取决于黄金标准细分,我们提出了一个框架,通过引入对如何建立黄金标准细分的考虑来扩展此方法。该框架展示了如何以一种原则性的方式获得特定于项目的绩效指标,该方法将注释工具,融合方法和评估算法链接到一个称为SAGE的统一模型中。我们还描述了SAGE的免费提供的实现,该实现可针对单个注释或融合注释进行快速分段验证。最后,提出了三项研究,以强调注释工具,注释器和融合方法对建立用于细胞和动脉图像的可信金标准分割的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号