首页> 外文会议>2013 IEEE Workshop on Applications of Computer Vision. >Boosting object detection performance in crowded surveillance videos
【24h】

Boosting object detection performance in crowded surveillance videos

机译:在拥挤的监控视频中提高目标检测性能

获取原文
获取原文并翻译 | 示例

摘要

We present a novel approach to automatically create efficient and accurate object detectors tailored to work well on specific video surveillance cameras (specific-domain detectors), using samples acquired with the help of a more expensive, general-domain detector (trained using images from multiple cameras). Our method requires no manual labels from the target domain. We automatically collect training data using tracking over short periods of time from high-confidence samples selected by the general-domain detector. In this context, a novel confidence measure is proposed for detectors based on a cascade of classifiers, which are frequently adopted for computer vision applications that require real-time processing. We demonstrate our proposed approach on the problem of vehicle detection in crowded surveillance videos, showing that an automatically generated detector significantly outperforms the original general-domain detector with much less feature computations.
机译:我们提出了一种新颖的方法,该方法可以自动创建高效,准确的对象检测器,这些对象检测器可以在特定的视频监控摄像机(特定域检测器)上正常工作,并使用更昂贵的通用域检测器(使用来自多个相机)。我们的方法不需要来自目标域的手动标签。我们使用短时跟踪从通用域检测器选择的高置信度样本中自动收集训练数据。在这种情况下,针对基于分类器级联的检测器提出了一种新颖的置信度度量,这些分类器经常用于需要实时处理的计算机视觉应用中。我们在拥挤的监视视频中展示了我们针对车辆检测问题的拟议方法,表明自动生成的检测器明显优于原始的通用域检测器,而特征计算却少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号