首页> 外文会议>2013 IEEE Third International Conference on Cloud and Green Computing >Social Interaction Propensity Model Using Information Entropy
【24h】

Social Interaction Propensity Model Using Information Entropy

机译:基于信息熵的社会互动倾向模型

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a novel user model, social interaction propensity model, for computing similarity of mobile phone users. Traditional studies exploit the usage history to represent the users by their behavioral patterns. This representation model requires prohibitive costs for dealing with the high-dimensional space that contains the usage patterns according to various contextual features. To alleviate the high-dimensionality, we propose a user model that is represented no longer with explicit usage patterns but only with its distribution uniformity to reduce the space. For evaluation, we developed a life-logger application to gather the real data from users. The evaluation result indicates that the user space is reduced linearly with the number of features without losing the precision of computing user similarity.
机译:本文介绍了一种新颖的用户模型,即社交互动倾向模型,用于计算手机用户的相似度。传统研究利用使用历史来通过用户的行为模式来表示用户。这种表示模型需要高昂的成本来处理包含根据各种上下文特征的使用模式的高维空间。为了减轻高维性,我们提出了一种用户模型,该模型不再以明确的使用模式表示,而是仅以其分布均匀性来表示,以减少空间。为了进行评估,我们开发了一个生活记录器应用程序来收集用户的真实数据。评估结果表明,用户空间随特征数量线性减少,而不会失去计算用户相似度的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号