首页> 外文会议>2013 IEEE Conference on Computatonal Intelligence in Games >Modeling player preferences in avatar customization using social network data: A case-study using virtual items in Team Fortress 2
【24h】

Modeling player preferences in avatar customization using social network data: A case-study using virtual items in Team Fortress 2

机译:使用社交网络数据在化身定制中模拟玩家偏好:使用Team Fortress 2中的虚拟物品进行案例研究

获取原文
获取原文并翻译 | 示例

摘要

Game players express their values related to self-expression through various means such as avatar customization, gameplay styles, and interactions with other players. Multiplayer online games, now often integrated with social networks, provide social contexts in which player-to-player interactions take place, for example, through the trading of virtual items between players. Building upon a theoretical framework based in computer science and cognitive science, we present results from a novel approach to modeling and analyzing player values in terms of both preferences made in avatar customization, and patterns in social networking use. Our approach resulted in the development of the Steam-Player-Preference Analyzer (Steam-PPA) system, which (1) performs advanced data collection on publicly available social networking profile information and (2) the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses machine learning techniques including clustering, natural language processing, and support vector machines (SVM) to perform inference on the data. As an initial case-study, we apply both systems to the popular, and commercially successful, multi-player first-person-shooter game Team Fortress 2 by analyzing information from player accounts on the social network Steam, together with avatar customization information generated by the player within the game. Our model uses social networking information to predict the likelihood of players customizing their profile in several ways associated with the monetary values of the players' avatar.
机译:游戏玩家通过各种方式来表达与自我表达有关的价值观,例如头像定制,游戏风格以及与其他玩家的互动。现在通常与社交网络集成的多玩家在线游戏提供了社交环境,在这种社交环境中,玩家之间的互动得以发生,例如,通过玩家之间虚拟物品的交易。在基于计算机科学和认知科学的理论框架的基础上,我们介绍了一种新颖的方法,该方法可以根据化身定制中的偏好以及社交网络使用模式来建模和分析玩家价值。我们的方法促成了Steam-Player-Preference分析器(Steam-PPA)系统的开发,该系统(1)对公开可用的社交网络配置文件信息执行高级数据收集,并且(2)AIR Toolkit状态性能分类器(AIR-SPC) ),它使用机器学习技术(包括聚类,自然语言处理和支持向量机(SVM))对数据进行推理。作为最初的案例研究,我们通过分析社交网络Steam上玩家帐户中的信息以及由社交网络生成的头像自定义信息,将这两种系统都应用于流行且商业上成功的多人第一人称射击游戏Team Fortress 2。游戏中的玩家。我们的模型使用社交网络信息来预测玩家以多种方式自定义其个人资料的可能性,这些方式与玩家头像的货币价值相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号