首页> 外文会议>2012 SC Companion: High Performance Computing, Networking, Storage and Analysis. >Improving Energy Efficiency through Parallelization and Vectorization on Intel Core i5 and i7 Processors
【24h】

Improving Energy Efficiency through Parallelization and Vectorization on Intel Core i5 and i7 Processors

机译:通过Intel Core i5和i7处理器上的并行化和矢量化提高能效

获取原文
获取原文并翻译 | 示例

摘要

Driven by the utilization wall and the Dark Silicon effect, energy efficiency has become a key research area in microprocessor design. Vectorization, parallelization, specialization and heterogeneity are the key design points to deal with the utilization wall. Heterogeneous architectures are enhanced with architectural optimizations, such as vectorization, to further increase the energy efficiency of the processor, reducing the number of instructions that go through the pipeline and leveraging the usage of the memory hierarchy. AMD Fusion or Intel Core i5 and i7 are commercial examples of this new generation of microprocessors. Still, there is a question to be answered: How can software developers maximize energy efficiency of these architectures? In this paper, we evaluate the energy efficiency of different processors from the Intel Core i5 and i7 family, using selected benchmarks from the PARSEC suite with variable core counts and vectorization techniques to quantify energy efficiency under the Thermal Design Power (TDP). Results show that software developers should prioritize vectorization over parallelization whenever possible, as it is much better in terms of energy efficiency. When using vectorization and parallelization simultaneously, scalability of the application can be reduced drastically, and may require different development strategies to maximize resource utilization in order to increase energy efficiency. This is especially true in the server market, where we can find more than one processor per board. Finally, when comparing on-chip and âat the wallâ energy savings, we can see variations from 5 to 20%, depending on the benchmark and system. This high variability shows the need to develop a more detailed model to predict system power based on on-chip power information.
机译:在应用墙和深色硅效应的推动下,能源效率已成为微处理器设计中的关键研究领域。向量化,并行化,专业化和异构性是处理利用率壁的关键设计点。异构体系结构通过诸如矢量化之类的体系结构优化得到增强,以进一步提高处理器的能效,减少通过管道的指令数量,并充分利用内存层次结构。 AMD Fusion或Intel Core i5和i7是这种新一代微处理器的商业示例。仍然有一个问题需要回答:软件开发人员如何才能最大限度地提高这些体系结构的能源效率?在本文中,我们使用PARSEC套件中的选定基准(具有可变核数和矢量化技术)来评估Intel Core i5和i7家族不同处理器的能效,以量化热设计功率(TDP)下的能效。结果表明,软件开发人员应尽可能将向量化优先于并行化,因为在能效方面要好得多。当同时使用向量化和并行化时,应用程序的可伸缩性可能会大大降低,并且可能需要不同的开发策略来最大限度地利用资源以提高能源效率。在服务器市场上尤其如此,在我们的主板上我们可以找到多个处理器。最后,在比较片上能耗和“壁式能耗”时,我们可以看到从5%到20%的差异,具体取决于基准和系统。这种高可变性表明需要开发更详细的模型以基于片上功率信息来预测系统功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号