首页> 外文会议>2012 SC Companion: High Performance Computing, Networking, Storage and Analysis. >Abstract: Autonomic Modeling of Data-Driven Application Behavior
【24h】

Abstract: Autonomic Modeling of Data-Driven Application Behavior

机译:摘要:数据驱动的应用程序行为的自主建模

获取原文
获取原文并翻译 | 示例

摘要

Computational behavior of large-scale data driven applications is a complex function of their input, configuration settings, and underlying system architecture. Difficulty in predicting the behavior of these applications makes it challenging to optimize their performance and schedule them onto compute resources. However, manually diagnosing performance problems and reconfiguring resource settings to improve application performance is infeasible and inefficient. We thus need autonomic optimization techniques that observe the application, learn from the observations, and subsequently successfully predict application behavior across different systems and load scenarios. This work presents a modular modeling approach for complex data-driven applications using statistical techniques. These techniques capture important characteristics of input data, consequent dynamic application behavior and system properties to predict application behavior with minimum human intervention. The work demonstrates how to adaptively structure and configure the models based on the observed complexity of application behavior in different input and execution scenarios.
机译:大规模数据驱动的应用程序的计算行为是其输入,配置设置和基础系统体系结构的复杂功能。很难预测这些应用程序的行为,因此很难优化它们的性能并将它们调度到计算资源上。但是,手动诊断性能问题并重新配置资源设置以提高应用程序性能是不可行且效率低下的。因此,我们需要自主优化技术来观察应用程序,从观察中学习并随后成功预测不同系统和负载情况下的应用程序行为。这项工作提出了使用统计技术针对复杂数据驱动的应用程序的模块化建模方法。这些技术捕获了输入数据的重要特征,随之而来的动态应用程序行为和系统属性,从而以最少的人工干预来预测应用程序行为。这项工作演示了如何基于在不同输入和执行场景中观察到的应用程序行为的复杂性,来自适应地构建和配置模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号