首页> 外文会议>2012 SC Companion: High Performance Computing, Networking, Storage and Analysis. >Performance and Power Characteristics of Matrix Multiplication Algorithms on Multicore and Shared Memory Machines
【24h】

Performance and Power Characteristics of Matrix Multiplication Algorithms on Multicore and Shared Memory Machines

机译:多核和共享存储机器上矩阵乘法算法的性能和功率特性

获取原文
获取原文并翻译 | 示例

摘要

For many scientific applications, dense matrix multiplication is one of the most important and computation intensive linear algebra operations. An efficient matrix multiplication on high performance and parallel computers requires optimizations on how matrices are decomposed and exchanged between com- putational nodes to reduce communication and synchronization overhead, as well as to efficiently exploit the memory hierarchy within a node to improve both spatial and temporal data locality. In this paper, we presented our studies of performance, cache behavior, and energy efficiency of multiple parallel matrix multiplication algorithms on a multicore desktop computer and a medium-size shared memory machine, both being considered as referenced sizes of nodes to create a medium- and large- scale computational clusters for high performance computing used in industry and national laboratories. Our results highlight both the performance and energy efficiencies, and also provide implications on the memory and resources pressures of those algorithms. We hope this could help users choose the appropriate implementations according to their specific data sets when composing larger-scale scientific applications that use parallel matrix multiplication kernels on a node.
机译:对于许多科学应用而言,密集矩阵乘法是最重要且计算量大的线性代数运算之一。在高性能和并行计算机上进行有效的矩阵乘法,需要优化如何在计算节点之间分解和交换矩阵,以减少通信和同步开销,并有效利用节点内的存储器层次结构来改善时空数据位置。在本文中,我们介绍了我们在多核台式计算机和中型共享内存计算机上对多种并行矩阵乘法算法的性能,缓存行为和能效进行的研究,这两种方法均被视为创建中等规模节点的节点的参考大小。以及用于工业和国家实验室的高性能计算的大规模计算集群。我们的结果既突出了性能和能源效率,也暗示了这些算法的内存和资源压力。我们希望这可以帮助用户在组成在节点上使用并行矩阵乘法内核的大规模科学应用程序时,根据他们的特定数据集选择适当的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号