首页> 外文学位 >Energy-Efficient and High-Performance Nanophotonic Interconnects for Shared Memory Multicores.
【24h】

Energy-Efficient and High-Performance Nanophotonic Interconnects for Shared Memory Multicores.

机译:共享内存多核的节能高效纳米光子互连。

获取原文
获取原文并翻译 | 示例

摘要

By 2018, both industry and academic leaders expect computer performance to reach the exascale level, allowing 10^18 floating point calculations persecond (FLOP). However, exascale computing can only exist if high-performance and energy-efficient chip multi-processors (CMPs) can be realized. It is well-known that the power dissipation of metallic interconnects in future multicore architectures is projected to be a major bottleneck as we scale to the sub-nanometer regime. This has forced researchers to focus their attention on developing alternate power-efficient technology solutions for performance limitations of future multicore architectures. Nanophotonic interconnects are a disruptive technology solution that is capable of delivering the communication bandwidth at low power dissipation when the number of cores is scaled to large numbers. Furthermore, recent advances in complementary metal-oxide semiconductor (CMOS) compatible devices and circuits development have made nanophotonics a viable solution for on-chip applications. This dissertation proposes two nanophotonic architectures called 3D-NoC and PULSE. These architectures alleviate two major problems facing current mutlicores, which are to improve performance and programmability respectively. 3D-NoC combines the benefits of 3D integration with nanophotonics to construct a high-performance high-core (256 cores) CMP. In addition, to further maximize the performance of 3D-NoC, this dissertation proposes a reconfiguration algorithm whose purpose is to improve performance by adapting available network bandwidth to application demands. This is accomplished by monitoring the traffic load and applying a reconfiguration algorithm that works in the background without disrupting the on-going communication. PULSE is a tree-based broadcast network which combines/splits optical signals using a combination of couplers and splitters in such a way that the same intensity light arrives at all the cores simultaneously ensuring the ordering required for snoopy protocols. In addition, this dissertation proposes a photonic cache filtering technique called multi-PULSE. This allows the broadcast network to rapidly morph into a multicast network by directing the address request to only those cores that actually share the block. Multi-PULSE allows for a reduction in cache access power as only the cores that have the cache block will receive the request. Moreover, 3D-NoC and PULSE are compared to other leading electrical and nanophotonic architectures using synthetic traffic, SPEC CPU2006, Splash-2 and PARSEC benchmarks. When PULSE is compared to other leading nanophotonic and electrical broadcast networks, simulation results show PULSE demonstrates a speed-up of 55% and power savings of 80% over other leading networks. On the other hand, when 3D-NoC is compared to other leading nanophotonic networks, simulation results indicate that 3D-NoC can further improve Splash-2, Parsec, and SPEC CPU20006 benchmarks by 10%-25% .
机译:到2018年,行业和学术界的领导者都希望计算机性能达到百亿亿级别,从而实现每秒10 ^ 18的浮点计算(FLOP)。但是,只有在可以实现高性能和高能效的芯片多处理器(CMP)的情况下,万亿级计算才可以存在。众所周知,随着我们扩展到亚纳米级别,预计未来多核架构中金属互连的功耗将成为主要瓶颈。这迫使研究人员将精力集中在开发替代节能技术解决方案上,以解决未来多核架构的性能限制。纳米光子互连是一种破坏性的技术解决方案,当核的数量扩展到大量时,它能够以低功耗提供通信带宽。此外,互补金属氧化物半导体(CMOS)兼容器件和电路开发的最新进展使纳米光子学成为片上应用的可行解决方案。本文提出了两种称为3D-NoC和PULSE的纳米光子体系结构。这些体系结构缓解了当前的多核面临的两个主要问题,分别是提高性能和可编程性。 3D-NoC将3D集成的优势与纳米光子学相结合,以构建高性能的高核(256核)CMP。另外,为了进一步最大化3D-NoC的性能,本文提出了一种重配置算法,其目的是通过使可用的网络带宽适应应用需求来提高性能。这是通过监视流量负载并应用在后台工作而不中断正在进行的通信的重新配置算法来实现的。 PULSE是基于树的广播网络,它使用耦合器和分离器的组合来组合/分离光信号,以使相同强度的光同时到达所有核心,从而确保侦听协议所需的排序。另外,本文提出了一种称为多脉冲的光子高速缓存滤波技术。通过将地址请求仅定向到实际共享该块的那些内核,这可以使广播网络迅速变为多播网络。 Multi-PULSE可以降低缓存访问能力,因为只有具有缓存块的内核才能接收到请求。此外,使用合成流量,SPEC CPU2006,Splash-2和PARSEC基准,将3D-NoC和PULSE与其他领先的电气和纳米光子架构进行了比较。当将PULSE与其他领先的纳米光子和电广播网络进行比较时,仿真结果表明PULSE与其他领先的网络相比,可实现55%的速度提升和80%的功耗节省。另一方面,将3D-NoC与其他领先的纳米光子网络进行比较时,仿真结果表明3D-NoC可以将Splash-2,Parsec和SPEC CPU20006基准进一步提高10%-25%。

著录项

  • 作者

    Morris, Randy W., Jr.;

  • 作者单位

    Ohio University.;

  • 授予单位 Ohio University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号