首页> 外文会议>2012 IEEE Visual Communications and Image Processing. >A novel particle filtering framework for 2D-TO-3D conversion from a monoscopic 2D image sequence
【24h】

A novel particle filtering framework for 2D-TO-3D conversion from a monoscopic 2D image sequence

机译:用于从单视2D图像序列进行2D-TO-3D转换的新颖粒子过滤框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel 2D-TO-3D conversion approach from a monoscopic 2D image sequence. We propose a particle filter framework for recursive recovery of point-wise depth from feature correspondences matched through image sequences. We formulate a novel 2D dynamics model for recursive depth estimation with the combination of camera model, structure model and translation model. The proposed method utilizes edge-detection-assisted scale-invariant features to avoid lack of edge features in scale-invariant features (SIFT). Furthermore, the depths in the depth map are computed and interpolated using 2D Delaunay triangulation. Finally, a stereo-view generation algorithm is presented for multiple users that uses proposed dynamics model and particle filter framework. Experimental results show that our proposed framework yields superior results.
机译:本文从单视2D图像序列中提出了一种新颖的2D-TO-3D转换方法。我们提出了一种粒子过滤器框架,用于从通过图像序列匹配的特征对应中递归恢复点深度。我们结合相机模型,结构模型和平移模型,制定了一种用于递归深度估计的新型二维动力学模型。所提出的方法利用边缘检测辅助的尺度不变特征来避免尺度不变特征(SIFT)中缺少边缘特征。此外,使用2D Delaunay三角剖分来计算和内插深度图中的深度。最后,提出了一种立体视图生成算法,该算法使用建议的动力学模型和粒子滤波器框架为多个用户提供了算法。实验结果表明,我们提出的框架产生了优异的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号