首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >Discriminative sparse image representation for classification based on a greedy algorithm
【24h】

Discriminative sparse image representation for classification based on a greedy algorithm

机译:基于贪婪算法的区分性稀疏图像表示

获取原文
获取原文并翻译 | 示例

摘要

Massive amount of data with high dimensionality can pose a problem for efficient image classification. Recently there has been an effort to extend the application of sparse representations of signals to image classification. In this paper, we propose a method that extracts the smallest number of features that discriminate the images from different classes using a cost function that combines discrimination power and sparsity. The proposed method was evaluated using the TU Darmstadt database and was compared with Linear Discriminant Analysis (LDA) and was shown to achieve higher accuracy with smaller number of features than LDA. The robustness of our method to noise and occlusion was also illustrated through experiments.
机译:具有高维度的海量数据可能会给有效的图像分类带来问题。最近,人们努力将信号的稀疏表示的应用扩展到图像分类。在本文中,我们提出了一种方法,该方法使用结合了判别力和稀疏性的代价函数,提取出最少数量的可区分不同类别图像的特征。使用TU Darmstadt数据库对提出的方法进行了评估,并将其与线性判别分析(LDA)进行了比较,结果表明,与LDA相比,该方法具有更高的精度和更少的特征。还通过实验说明了我们的方法对噪声和遮挡的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号