首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >Reducing the gap between linear biased classical and linear Bayesian estimation
【24h】

Reducing the gap between linear biased classical and linear Bayesian estimation

机译:减少线性有偏经典估计与线性贝叶斯估计之间的差距

获取原文
获取原文并翻译 | 示例

摘要

In classical estimation usually unbiased estimators are used. This is mainly because the bias term in classical biased estimators in general depends on the parameter to be estimated. However, recently a considerable amount of research has been spent on improving unbiased estimators by introducing a bias, e.g. based on a minimax optimization strategy. In this work we follow this idea of introducing a bias, but we describe a different strategy for optimizing the estimators' performance. Although we stick to classical estimation, we show that the Bayesian linear minimum mean square error estimator can be brought into the same algebraic form as the resulting biased estimator improving the best linear unbiased estimator. This not only emphasizes the fact that this approach leads to betters estimators than the minimax approach on average over all parameters, but also can be seen as another way of reducing the gap between classical and Bayesian estimation.
机译:在经典估计中,通常使用无偏估计。这主要是因为经典偏差估算器中的偏差项通常取决于要估算的参数。然而,近来已经进行了大量的研究,以通过引入偏差来改善无偏估计量。基于最小最大优化策略。在这项工作中,我们遵循引入偏差的想法,但是我们描述了一种用于优化估算器性能的不同策略。尽管我们坚持经典估计,但我们表明,贝叶斯线性最小均方误差估计器可以与所得的有偏估计器引入相同的代数形式,从而改善了最佳线性无偏估计器。这不仅强调了这样一个事实,即在所有参数上平均而言,该方法比最小极大值方法具有更好的估计量,而且可以看作是减少经典估计与贝叶斯估计之间差距的另一种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号