首页> 外文会议>2012 IEEE Statistical Signal Processing Workshop. >Exploiting correlated discriminant features in time frequency and space for characterization and robust classification of image RSVP events with EEG data
【24h】

Exploiting correlated discriminant features in time frequency and space for characterization and robust classification of image RSVP events with EEG data

机译:利用时间频率和空间中的相关判别特征,对带有脑电数据的图像RSVP事件进行表征和鲁棒分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem of automatic characterizing and detecting target images in an image rapid serial visual presentation (RSVP) task based on EEG data is considered. A novel method that aims at identifying event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier with feature clustering is developed to better utilize the correlated ERP features. The method is applied to EEG recordings of a RSVP experiment with multiple sessions and subjects. The results show that, the target image events are mainly characterized by 3 distinct patterns in the time-frequency domain, i.e., a theta band (4.3 Hz) power boost 300–700 ms after the target image onset, an alpha band (12 Hz) power repression 500–1000 ms after the stimulus onset, and a delta band (2 Hz) power boost after 500 ms. The discriminate time-frequency features are mostly power boost and relatively consistent among multiple sessions and subjects. These features are visualized for later analysis. For classification of target and non-target images, our LDA classifier was based on the uncorrelated features, which was constructed from original correlated features using clustering method. With feature clustering, the performance (area under ROC) was improved from 0.85 to 0.89 for within-session tests, and from 0.76 to 0.84 for cross-subject tests. Meanwhile, the constructed uncorrelated features were shown more robust than the original discriminant features, and corresponding to a local region in time-frequency.
机译:本文考虑了基于EEG数据的图像快速串行视觉呈现(RSVP)任务中目标图像的自动表征和检测问题。提出了一种旨在识别时频事件相关电位(ERP)的新颖方法,并开发了一种具有特征聚类的鲁棒分类器,以更好地利用相关的ERP特征。该方法适用于具有多个会话和主题的RSVP实验的EEG记录。结果表明,目标图像事件的主要特征是时频域中的3种不同模式,即目标图像开始后300-700 ms的theta频带(4.3 Hz)功率提升,α频带(12 Hz) )在刺激开始后500–1000 ms抑制功率,并在500 ms之后增强三角带(2 Hz)的功率。所区分的时频特征主要是功率提升,并且在多个会话和主题之间相对一致。这些功能将可视化以供以后分析。对于目标图像和非目标图像的分类,我们的LDA分类器基于不相关特征,该不相关特征是使用聚类方法从原始相关特征构建而成的。通过特征聚类,会话内测试的性能(ROC下的区域)从0.85提高到0.89,而跨学科测试的性能从0.76提高到0.84。同时,所构造的不相关特征被显示为比原始判别特征更鲁棒,并且对应于时频的局部区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号