首页> 外文会议>2012 IEEE International Conference on Computational Intelligence and Cybernetics. >Developing discrete density Hidden Markov Models for Arabic printed text recognition
【24h】

Developing discrete density Hidden Markov Models for Arabic printed text recognition

机译:开发用于阿拉伯印刷文本识别的离散密度隐马尔可夫模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a technique for the recognition of unconstrained Arabic printed text is proposed. Features that measure the image characteristics at local scales are applied. A line image is divided into a set of one-pixel width windows which is sliding a cross that text line. Run length encoding is used to extract features from each window. A unique method is chosen to select best number of transitions for each window. The proposed recognition system is trained and tested on the APTI (Arabic Printed Text Image) database. In order to select the optimal parameters for feature extraction and for the HMM classifier, the APTI training dataset is further divided into a smaller training subset and a verification set. The estimated parameters are, then, used in the testing phase. The presented technique provides state-of-the-art recognition results on the APTI database using HMMs. The achieved average recognition rates is 96.65% on the letter level using the HMM classifier.
机译:本文提出了一种识别不受约束的阿拉伯文印刷文本的技术。应用在局部比例尺上测量图像特征的功能。线图像被分成一组一个像素宽度的窗口,该窗口在该文本行上滑动。行程编码用于从每个窗口提取特征。选择一种独特的方法为每个窗口选择最佳的过渡次数。拟议的识别系统在APTI(阿拉伯语印刷文本图像)数据库上进行了培训和测试。为了选择特征提取和HMM分类器的最佳参数,APTI训练数据集进一步分为较小的训练子集和验证集。然后,将估计的参数用于测试阶段。提出的技术使用HMM在APTI数据库上提供最新的识别结果。使用HMM分类器,在字母级别获得的平均识别率为96.65%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号