首页> 外文会议>2012 IEEE 31st International Performance Computing and Communications Conference. >An adaptive power management framework for autonomic resource configuration in cloud computing infrastructures
【24h】

An adaptive power management framework for autonomic resource configuration in cloud computing infrastructures

机译:用于云计算基础架构中自主资源配置的自适应电源管理框架

获取原文
获取原文并翻译 | 示例

摘要

Power is becoming an increasingly important concern for large-scale cloud computing systems. Meanwhile, cloud service providers leverage virtualization technologies to facilitate service consolidation and enhance resource utilization. However, the introduction of virtualization makes the cloud infrastructure more complex, and thus challenges cloud power management. In a virtualized environment, resource needs to be configured at runtime at the cloud, server and virtual machine levels to achieve high power efficiency. In addition, cloud power management should guarantee high users' SLA (service level agreement) satisfaction. In this paper, we present an adaptive power management framework in the cloud to achieve autonomic resource configuration. We propose a software and lightweight approach to accurately estimate the power usage of virtual machines and cloud servers. It explores hypervisor-observable performance metrics to build the power usage model. To configure cloud resources, we consider both the system power usage and the SLA requirements, and leverage learning techniques to achieve autonomic resource allocation and optimal power efficiency. We implement a prototype of the proposed power management system and test it on a cloud testbed. Experimental results show the high accuracy (over 90%) of our power usage estimation mechanism and our resource configuration approach achieves the lowest energy usage among the compared four approaches.
机译:对于大型云计算系统,电源正变得越来越重要。同时,云服务提供商利用虚拟化技术促进服务整合并提高资源利用率。但是,虚拟化的引入使云基础架构更加复杂,因此对云电源管理提出了挑战。在虚拟化环境中,需要在运行时在云,服务器和虚拟机级别上配置资源,以实现高能效。此外,云电源管理应确保高用户的SLA(服务水平协议)满意度。在本文中,我们提出了一种云中的自适应电源管理框架,以实现自主资源配置。我们提出了一种软件和轻量级方法来准确估计虚拟机和云服务器的功耗。它探索了虚拟机管理程序可观察到的性能指标,以建立电源使用模型。要配置云资源,我们会同时考虑系统功耗和SLA要求,并利用学习技术来实现自主资源分配和最佳电源效率。我们实现了所提出的电源管理系统的原型,并在云测试平台上对其进行了测试。实验结果表明,我们的用电量估算机制具有很高的准确性(超过90%),并且在四种比较方法中,我们的资源配置方法实现了最低的能耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号