首页> 外文会议>2012 IEEE 26th International Parallel and Distributed Processing Symposium >ExPERT: Pareto-Efficient Task Replication on Grids and a Cloud
【24h】

ExPERT: Pareto-Efficient Task Replication on Grids and a Cloud

机译:ExPERT:网格和云上的帕累托高效任务复制

获取原文
获取原文并翻译 | 示例

摘要

Many scientists perform extensive computations by executing large bags of similar tasks (BoTs) in mixtures of computational environments, such as grids and clouds. Although the reliability and cost may vary considerably across these environments, no tool exists to assist scientists in the selection of environments that can both fulfill deadlines and fit budgets. To address this situation, we introduce the Expert BoT scheduling framework. Our framework systematically selects from a large search space the Pareto-efficient scheduling strategies, that is, the strategies that deliver the best results for both make span and cost. Expert chooses from them the best strategy according to a general, user-specified utility function. Through simulations and experiments in real production environments, we demonstrate that Expert can substantially reduce both make span and cost in comparison to common scheduling strategies. For bioinformatics BoTs executed in a real mixed grid + cloud environment, we show how the scheduling strategy selected by Expert reduces both make span and cost by 30%-70%, in comparison to commonly-used scheduling strategies.
机译:许多科学家通过在网格和云等混合计算环境中执行大袋类似任务(BoT)来执行大量计算。尽管可靠性和成本在这些环境中可能相差很大,但没有工具可以帮助科学家选择既能满足期限又能满足预算要求的环境。为了解决这种情况,我们介绍了专家BoT调度框架。我们的框架从较大的搜索空间中系统地选择帕累托高效的排产策略,即能够为制造跨度和成本提供最佳结果的策略。专家根据用户指定的通用效用函数从中选择最佳策略。通过在实际生产环境中的仿真和实验,我们证明,与常见的调度策略相比,Expert可以显着减少制造跨度和成本。对于在真正的混合网格+云环境中执行的生物信息BoT,我们展示了专家选择的调度策略与常用的调度策略相比如何将制造跨度和成本降低了30%-70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号