首页> 外文会议>2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops amp; PhD Forum >The Development of Parallel Adaptive Sampling Algorithms for Analyzing Biological Networks
【24h】

The Development of Parallel Adaptive Sampling Algorithms for Analyzing Biological Networks

机译:用于分析生物网络的并行自适应采样算法的开发

获取原文
获取原文并翻译 | 示例

摘要

The availability of biological data in massive scales continues to represent unlimited opportunities as well as great challenges in bioinformatics research. Developing innovative data mining techniques and efficient parallel computational methods to implement them will be crucial in extracting useful knowledge from this raw unprocessed data, such as in discovering significant cellular subsystems from gene correlation networks. In this paper, we present a scalable combinatorial sampling technique, based on identifying maximum chordal sub graphs, that reduces noise from biological correlation networks, thereby making it possible to find biologically relevant clusters from the filtered network. We show how selecting the appropriate filter is crucial in maintaining the key structures from the original networks and uncovering new ones after removing noisy relationships. We also conduct one of the first comparisons in two important sensitivity criteria -- the perturbation due to the vertex numbers of the network and perturbations due to data distribution. We demonstrate that our chordal-graph based filter is effective across many different vertex permutations, as is our parallel implementation of the sampling algorithm.
机译:大规模获取生物数据继续代表着无限的机会,同时也代表着生物信息学研究的巨大挑战。开发创新的数据挖掘技术和有效的并行计算方法以实施这些技术,对于从未经处理的原始数据中提取有用的知识至关重要,例如从基因相关网络中发现重要的细胞子系统。在本文中,我们基于可识别的最大弦子图,提出了一种可扩展的组合采样技术,该技术可降低来自生物相关网络的噪声,从而可以从过滤后的网络中找到与生物相关的簇。我们展示了如何选择合适的过滤器对于维护原始网络的关键结构以及在消除嘈杂的关系之后发现新的关键结构至关重要。我们还在两个重要的敏感性标准中进行了第一次比较之一-网络顶点数引起的扰动和数据分布引起的扰动。我们证明了基于弦图的滤波器在许多不同的顶点置换中都是有效的,以及采样算法的并行实现也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号