首页> 外文会议>2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops amp; PhD Forum >Dynamic Linear Solver Selection for Transient Simulations Using Machine Learning on Distributed Systems
【24h】

Dynamic Linear Solver Selection for Transient Simulations Using Machine Learning on Distributed Systems

机译:在分布式系统上使用机器学习进行瞬态仿真的动态线性求解器选择

获取原文
获取原文并翻译 | 示例

摘要

Many transient simulations spend a significant portion of the overall runtime solving a linear system. A wide variety of preconditioned linear solvers have been developed to quickly and accurately solve different types of linear systems, each having options to customize the preconditioned solver for a given linear system. Transient simulations may produce significantly different linear systems as the simulation progresses due to special events occurring that make the linear systems more difficult to solve or the model moving closer to a state of equilibrium where the linear systems are easier to solve. Machine learning algorithms provide the ability to dynamically select the preconditioned linear solver for each linear system produced by a simulation. We can generate databases by computing attributes for each linear system, physical attributes for the transient simulation, computational attributes, and running times for a set of preconditioned solvers on each linear system. Machine learning algorithms can then use these databases to generate classifiers capable of dynamically selecting a preconditioned solver for each linear system given a set of attributes. This allows us to quickly and accurately compute each transient simulation using different preconditioned solvers throughout the simulation. This also provides the potential to produce speedups in comparison with using a single preconditioned solver for an entire transient simulation.
机译:许多瞬态仿真花费了整个运行时间的很大一部分来求解线性系统。已经开发了各种各样的预处理线性求解器,以快速而准确地求解不同类型的线性系统,每种都有选择针对给定线性系统定制预处理求解器的选项。由于发生的特殊事件,使线性系统更难于解决,或者模型接近平衡状态(线性系统更容易解决),因此随着模拟的进行,瞬态仿真可能会产生明显不同的线性系统。机器学习算法提供了为仿真产生的每个线性系统动态选择预处理线性求解器的能力。我们可以通过计算每个线性系统的属性,瞬态仿真的物理属性,计算属性以及每个线性系统上一组预处理求解器的运行时间来生成数据库。然后,机器学习算法可以使用这些数据库来生成分类器,这些分类器能够为给定一组属性的每个线性系统动态选择预处理求解器。这使我们能够在整个模拟过程中使用不同的预处理求解器快速而准确地计算每个瞬态模拟。与在整个瞬态仿真中使用单个预处理求解器相比,这还具有产生加速的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号