首页> 外文会议>2012 Fourth World Congress on Nature and Biologically Inspired Computing. >Opposition based Chaotic Differential Evolution algorithm for solving global optimization problems
【24h】

Opposition based Chaotic Differential Evolution algorithm for solving global optimization problems

机译:基于对立的混沌差分进化算法求解全局最优化问题

获取原文
获取原文并翻译 | 示例

摘要

A modified differential evolution (DE) algorithm based on opposition based learning and chaotic sequence named Opposition based Chaotic Differential Evolution (OCDE) is proposed. The proposed OCDE algorithm is different from basic DE in two aspects. First is the generation of initial population, which follows Opposition Based Learning (OBL) rules; and the second is: dynamic adaption of scaling factor F using chaotic sequence. The numerical results obtained by OCDE when compared with the results obtained by DE and ODE (opposition based DE) algorithms on eighteen benchmark function demonstrate that the OCDE is able to find a better solution while maintaining a reasonable convergence rate.
机译:提出了一种基于对立学习和混沌序列的改进差分进化算法,称为基于对立的混沌差分进化算法。所提出的OCDE算法在两个方面与基本DE有所不同。首先是初始种群的产生,它遵循基于对立的学习(OBL)规则;第二个是:使用混沌序列对比例因子F的动态适应。与通过DE和ODE(基于反对派的DE)算法在18个基准函数上获得的结果相比,OCDE所获得的数值结果表明OCDE能够找到更好的解决方案,同时保持合理的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号