首页> 外文会议>2012 ASE International Conference on Social Informatics >Forming Effective Teams from Agents with Diverse Skill Sets
【24h】

Forming Effective Teams from Agents with Diverse Skill Sets

机译:由具有多种技能的特工组成有效的团队

获取原文
获取原文并翻译 | 示例

摘要

Many complex problems can be solved through an effective organization of human experts connected by a human computation network where each node contributes a unique skill set needed to enable a higher order problem solving capability of the group. Multi-Agent Systems (MAS) architecture is one of the examples in this group problem solving space, having demonstrated successful applications for well-defined domains such as military planning and trading auctions. Recent work in crowd sourcing applications based on enterprise social networks (e.g. People Cloud) showed that the group problem solving approach can be extended to enterprise and potentially Internet-wide scales. However, systems operating at such scales assume that candidate group participants make decisions about which groups to join based on limited connectivity and local information. This paper focuses on the relationship between network adaptation for candidate group participants and performance of problem solving groups. We demonstrate that systems that expect to form groups (e.g. crowd sourcing) by engaging participants equipped with diverse skill sets require more sophisticated network adaptation strategies than what can be expected based on previous research. To address this need, we evaluate a set of network adaptation algorithms for crowd sourcing and present some empirical results from a simulation based study.
机译:通过由人类计算网络连接的人类专家的有效组织,可以解决许多复杂的问题,其中每个节点都贡献了实现该小组更高层次的问题解决能力所需的独特技能。多代理系统(MAS)架构是该组问题解决空间中的示例之一,已展示了其在明确定义的领域(例如军事计划和交易拍卖)中的成功应用。基于企业社交网络(例如,People Cloud)的众包应用程序的最新工作表明,群体问题解决方法可以扩展到企业甚至整个Internet范围。但是,以这种规模运行的系统假定候选组参与者根据有限的连接性和本地信息来决定要加入的组。本文着眼于候选群体参与者的网络适应与问题解决群体的绩效之间的关系。我们证明了期望通过吸引具备各种技能的参与者来形成群体(例如众包)的系统需要比以前的研究预期更复杂的网络适应策略。为了满足这一需求,我们评估了一组用于人群寻源的网络自适应算法,并提供了来自基于仿真的研究的一些经验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号