首页> 外文会议>2012 4th Workshop on Hyperspectral Image and Signal Processing >Optimal sparse kernel learning in the Empirical Kernel Feature Space for hyperspectral classification
【24h】

Optimal sparse kernel learning in the Empirical Kernel Feature Space for hyperspectral classification

机译:高光谱分类的经验核特征空间中的最优稀疏核学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel framework for sparse kernel learning in a finite space called the Empirical Kernel Feature Space (EKFS). The EKFS can be explicitly built by using any positive definite kernel including Gaussian RBF kernel via an empirical kernel map. In order to turn the empirical kernel map into a feature map associated with a kernel, EKFS is endowed with the dot product of a map associated with the correponding whitened EKFS. In previous sparse kernel learning techniques, subsets of features were selected from the original input feature space. This method was optimal up to the linear kernel. In this work, feature subset selection is performed in the EKFS which leads to the selection of corresponding Reproducing Kernel Hilbert Space (RKHS). Both the EKFS and the corresponding RKHS have the same geometrical structure. The proposed sparse kernel learning can optimally select multiple subsets of newly mapped features in the EKFS in order to improve the generalization performance of the classifier. The sparse kernel-based learning is tested on several hyperspectral data sets and a performance comparison among different feature selection techniques is presented.
机译:在本文中,我们提出了一种在有限空间中进行稀疏内核学习的新颖框架,称为经验内核特征空间(EKFS)。可以使用任何正定核(包括高斯RBF核)通过经验核映射来显式构建EKFS。为了将经验核图转变成与核关联的特征图,EKFS被赋予与对应的变白EKFS关联的图的点积。在以前的稀疏内核学习技术中,特征的子集是从原始输入特征空间中选择的。此方法在线性核之前都是最佳的。在这项工作中,在EKFS中执行特征子集选择,从而选择了相应的再现内核希尔伯特空间(RKHS)。 EKFS和相应的RKHS都具有相同的几何结构。所提出的稀疏核学习可以最佳地选择EKFS中新映射特征的多个子集,以提高分类器的泛化性能。在几个高光谱数据集上测试了基于稀疏核的学习,并给出了不同特征选择技术之间的性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号