首页> 外文会议>2012 2nd International Conference on Power, Control and Embedded Systems >Trust-enhanced recommender system based on case-based reasoning and collaborative filtering
【24h】

Trust-enhanced recommender system based on case-based reasoning and collaborative filtering

机译:基于案例推理和协同过滤的信任增强推荐系统

获取原文
获取原文并翻译 | 示例

摘要

The emerging environment of recommender systems (RSs) facilitates tailored suggestions to users by mapping users' information space to their particular information requirements. In this paper, we propose a new recommendation scheme that combines case-based reasoning (CBR) with collaborative filtering (CF) and incorporates fuzzy trust model. The CBR methodology is employed to find the most appropriate cluster that forms neighborhood (nbd) set for the active user. The nbd generation process of CBR, based on user rating vector (URV) and clustering, improves system's scalability to certain extent. Additionally, the proposed scheme allows users to decide which other user's opinions they should trust more. In this way, the trustworthy users from the set of neighbors suggested by CBR are filtered by applying a fuzzy trust model. As a consequence, only trustworthy neighbors contribute to the final prediction. Experimental results clearly demonstrate that the proposed recommendation scheme (Trust/CBR/CF) outperforms Pearson CF (PCF) and CBR/CF.
机译:推荐器系统(RSs)的新兴环境通过将用户的信息空间映射到他们的特定信息需求,为用户提供量身定制的建议。在本文中,我们提出了一种新的推荐方案,该方案将基于案例的推理(CBR)与协作过滤(CF)相结合,并纳入了模糊信任模型。使用CBR方法来查找最合适的群集,该群集形成了活动用户的邻居(nbd)集。 CBR的nbd生成过程基于用户评级向量(URV)和聚类,在一定程度上提高了系统的可伸缩性。另外,所提出的方案允许用户决定他们应该更信任哪个其他用户的意见。这样,通过应用模糊信任模型,可以过滤出CBR建议的邻居集合中的可信用户。结果,只有可信赖的邻居才能做出最终预测。实验结果清楚地表明,建议的推荐方案(Trust / CBR / CF)优于Pearson CF(PCF)和CBR / CF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号