首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Investigating the role of machine translated text in ASR domain adaptation: Unsupervised and semi-supervised methods
【24h】

Investigating the role of machine translated text in ASR domain adaptation: Unsupervised and semi-supervised methods

机译:研究机器翻译文本在ASR域自适应中的作用:无监督和半监督方法

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the use of machine translated text for ASR domain adaptation. The proposed methodology is applicable when domain-specific data is available in language X only, whereas the goal is to develop a domain-specific system in language Y. Two semi-supervised methods are introduced and compared with a fully unsupervised approach, which represents the baseline. While both unsupervised and semi-supervised approaches allow to quickly develop an accurate domain-specific ASR system, the semi-supervised approaches overpass the unsupervised one by 10% to 29% relative, depending on the amount of human post-processed data available. An in-depth analysis, to explain how the machine translated text improves the performance of the domain-specific ASR, is also given at the end of this paper.
机译:本研究调查了将机器翻译的文本用于ASR域自适应的情况。当特定领域的数据仅在语言X中可用时,建议的方法适用。而目标是开发在语言Y中的特定领域系统。引入了两种半监督方法,并将其与完全无监督的方法进行比较,这表示基线。尽管无监督方法和半监督方法都可以快速开发准确的特定于域的ASR系统,但半监督方法相对于无监督方法要比无监督方法高出10%到29%,具体取决于人类后处理数据的数量。本文末尾还进行了深入分析,以解释机器翻译的文本如何提高特定于域的ASR的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号