首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Discriminative splitting of Gaussian/log-linear mixture HMMs for speech recognition
【24h】

Discriminative splitting of Gaussian/log-linear mixture HMMs for speech recognition

机译:高斯/对数线性混合HMM的判别分裂用于语音识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method to incorporate mixture density splitting into the acoustic model discriminative log-linear training. The standard method is to obtain a high resolution model by maximum likelihood training and density splitting, and then further training this model discriminatively. For a single Gaussian density per state the log-linear MMI optimization is a global maximum problem, and by further splitting and discriminative training of this model we can get a higher complexity model. The mixture training is not a global maximum problem, nevertheless experimentally we achieve large gains in the objective function and corresponding moderate gains in the word error rate on a large vocabulary corpus
机译:本文提出了一种将混合密度分解合并到声学模型的判别对数线性训练中的方法。标准方法是通过最大似然训练和密度分解获得高分辨率模型,然后有区别地进一步训练该模型。对于每个状态一个单一的高斯密度,对数线性MMI优化是一个全局最大问题,通过对该模型进行进一步的拆分和判别式训练,我们可以获得一个更高复杂度的模型。混合训练不是一个全局性的最大问题,尽管如此,通过实验,我们在目标函数上获得了较大的收益,而在较大的词汇语料库上,相应的中等程度的词错误率得到了改善

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号