首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Reliable Accent-Specific Unit Generation With Discriminative Dynamic Gaussian Mixture Selection for Multi-Accent Chinese Speech Recognition
【24h】

Reliable Accent-Specific Unit Generation With Discriminative Dynamic Gaussian Mixture Selection for Multi-Accent Chinese Speech Recognition

机译:具有区分性动态高斯混合选择的可靠口音特定单元生成,用于多口音中文语音识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a discriminative dynamic Gaussian mixture selection (DGMS) strategy to generate reliable accent-specific units (ASUs) for multi-accent speech recognition. Time-aligned phone recognition is used to generate the ASUs that model accent variations explicitly and accurately. DGMS reconstructs and adjusts a pre-trained set of hidden Markov model (HMM) state densities to build dynamic observation densities for each input speech frame. A discriminative minimum classification error criterion is adopted to optimize the sizes of the HMM state observation densities with a genetic algorithm (GA). To the author's knowledge, the discriminative optimization for DGMS accomplishes discriminative training of discrete variables that is first proposed. We found the proposed framework is able to cover more multi-accent changes, thus reduce some performance loss in pruned beam search, without increasing the model size of the original acoustic model set. Evaluation on three typical Chinese accents, Chuan, Yue and Wu, shows that our approach outperforms traditional acoustic model reconstruction techniques with a syllable error rate reduction of 8.0%, 5.5% and 5.0%, respectively, while maintaining a good performance on standard Putonghua speech.
机译:在本文中,我们提出了一种判别式动态高斯混合选择(DGMS)策略,以生成可靠的重音特定单位(ASU),用于多重音语音识别。时间对齐的电话识别用于生成ASU,以明确,准确地为重音变化建模。 DGMS重建和调整一组预训练的隐马尔可夫模型(HMM)状态密度,以为每个输入语音帧建立动态观察密度。采用判别式最小分类误差准则,通过遗传算法(GA)优化HMM状态观测密度的大小。据作者所知,针对DGMS的判别式优化实现了对离散变量的判别式训练,这是最早提出的。我们发现,提出的框架能够涵盖更多的重音变化,从而减少了修剪波束搜索时的某些性能损失,而无需增加原始声学模型集的模型大小。对三种典型的汉语口音Chuan,Yue和Wu的评估表明,我们的方法优于传统的声学模型重建技术,其音节错误率分别降低了8.0%,5.5%和5.0%,同时在普通话水平上保持了良好的性能。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号