首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >Bag of n-gram driven decoding for LVCSR system harnessing
【24h】

Bag of n-gram driven decoding for LVCSR system harnessing

机译:用于LVCSR系统利用的n-gram驱动袋式解码

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on automatic speech recognition systems combination based on driven decoding paradigms. The driven decoding algorithm (DDA) involves the use of a 1-best hypothesis provided by an auxiliary system as another knowledge source in the search algorithm of a primary system. In previous studies, it was shown that DDA outperforms ROVER when the primary system is guided by a more accurate system. In this paper we propose a new method to manage auxiliary transcriptions which are presented as a bag-of-n-grams (BONG) without temporal matching. These modifications allow to make easier the combination of several hypotheses given by different auxiliary systems. Using BONG combination with hypotheses provided by two auxiliary systems, each of which obtained more than 23% of WER on the same data, our experiments show that a CMU Sphinx based ASR system can reduce its WER from 19.85% to 18.66% which is better than the results reached with DDA or classical ROVER combination.
机译:本文重点研究基于驱动解码范例的自动语音识别系统组合。驱动解码算法(DDA)涉及使用由辅助系统提供的1-best假设作为主系统搜索算法中的另一个知识源。在以前的研究中,已经表明,当主系统由更精确的系统引导时,DDA的性能优于ROVER。在本文中,我们提出了一种用于管理辅助转录的新方法,该方法以n-袋(BONG)的形式出现,无需时间匹配。这些修改使不同辅助系统给出的多个假设的组合变得更容易。使用BONG结合两个辅助系统提供的假设,每个辅助系统在相同数据上均获得超过23%的WER,我们的实验表明,基于CMU Sphinx的ASR系统可以将其WER从19.85%降低到18.66%,优于使用DDA或经典ROVER组合可获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号