首页> 外文会议>2011 IEEE Workshop on Automatic Speech Recognition amp; Understanding >A Trajectory-based Parallel Model Combination with a unified static and dynamic parameter compensation for noisy speech recognition
【24h】

A Trajectory-based Parallel Model Combination with a unified static and dynamic parameter compensation for noisy speech recognition

机译:基于轨迹的并行模型组合,具有统一的静态和动态参数补偿,可用于嘈杂的语音识别

获取原文
获取原文并翻译 | 示例

摘要

Parallel Model Combination (PMC) is widely used as a technique to compensate Gaussian parameters of a clean speech model for noisy speech recognition. The basic principle of PMC uses a log normal approximation to transform statistics of the data distribution between the cepstral domain and the linear spectral domain. Typically, further approximations are needed to compensate the dynamic parameters separately. In this paper, Trajectory PMC (TPMC) is proposed to compensate both the static and dynamic parameters. TPMC uses the explicit relationships between the static and dynamic features to transform the static and dynamic parameters into a sequence (trajectory) of static parameters, so that the log normal approximation can be applied. Experimental results on WSJCAM0 database corrupted with additive babble noise reveals that the proposed TPMC method gives promising improvements over PMC and VTS.
机译:并行模型组合(PMC)被广泛用作补偿干净语音模型的高斯参数以进行嘈杂语音识别的技术。 PMC的基本原理使用对数正态逼近来转换倒频谱域和线性谱域之间数据分布的统计信息。通常,需要进一步近似来分别补偿动态参数。在本文中,提出了轨迹PMC(TPMC)来补偿静态和动态参数。 TPMC使用静态和动态特征之间的显式关系将静态和动态参数转换为静态参数的序列(轨迹),从而可以应用对数正态逼近。对WSJCAM0数据库进行了加性混响噪声破坏后的实验结果表明,所提出的TPMC方法相对于PMC和VTS提出了有希望的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号