首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Feature Compensation Approach Using High-Order Vector Taylor Series Approximation of an Explicit Distortion Model for Noisy Speech Recognition
【24h】

A Feature Compensation Approach Using High-Order Vector Taylor Series Approximation of an Explicit Distortion Model for Noisy Speech Recognition

机译:高阶向量泰勒级数逼近的显式失真模型用于噪声语音识别的特征补偿方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new feature compensation approach to noisy speech recognition by using high-order vector Taylor series (HOVTS) approximation of an explicit model of environmental distortions. Formulations for maximum-likelihood (ML) estimation of both additive noises and convolutional distortions, and minimum mean squared error (MMSE) estimation of clean speech are derived. Experimental results on Aurora2 and Aurora4 benchmark databases, where the modeling assumption of the distortion model is more accurate, demonstrate that the standard HOVTS-based feature compensation approaches achieve consistently significant improvement in recognition accuracy compared to traditional standard first-order VTS-based approach. For a real-world in-vehicle connected digits recognition task on Aurora3 benchmark database where the modeling assumption of the distortion model is less accurate, modifications are necessary to make VTS-based feature compensation approaches work. In this case, the second-order VTS-based approach performs only slightly better than the first-order VTS-based approach.
机译:本文通过使用高阶向量泰勒级数(HOVTS)逼近环境失真的显式模型,提出了一种新的噪声语音识别特征补偿方法。得出用于累加噪声和卷积失真的最大似然(ML)估计以及干净语音的最小均方误差(MMSE)估计的公式。在Aurora2和Aurora4基准数据库上的实验结果表明,与传统的基于标准一阶VTS的方法相比,基于HOVTS的标准特征补偿方法在识别准确度方面一直取得了显着提高,其中失真模型的建模假设更为准确。对于Aurora3基准数据库上的现实世界中车载数字识别任务,其中失真模型的建模假设不太准确,必须进行修改才能使基于VTS的特征补偿方法起作用。在这种情况下,基于二阶VTS的方法仅比基于一阶VTS的方法执行得更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号