首页> 外文会议>2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing >An interior point method for a semidefinite relaxation based equalizer incorporating prior information
【24h】

An interior point method for a semidefinite relaxation based equalizer incorporating prior information

机译:结合先验信息的基于半确定松弛的均衡器的内点方法

获取原文
获取原文并翻译 | 示例

摘要

The problem of maximum likelihood estimation of digital data transmitted over an intersymbol interference channel may be cast as a quadratically constrained quadratic program (QCQP). This problem may be solved approximately but efficiently using a semidefinite relaxation (SDR) technique in which the quadratic objective and constraints are converted into linear functions of a matrix variable. Recently the authors extended the basic SDR technique using maximum a posteriori probability (MAP) estimation to incorporate prior probabilities on the bits. The resulting estimator is a soft-input soft-output equalizer that can be used in iterative (turbo) equalization in situations where true optimal MAP equalization (implemented via the BCJR algorithm) is impractical because of its exponential complexity. This paper develops a custom interior point algorithm using the barrier method to solve the extended SDR problem which is convex. This custom solver is more computationally efficient than a general purpose solver because it can exploit the structure inherent in the equalization problem. Simulation experiments are provided that compare the running times of the new algorithm and a general purpose code (CVX). The new algorithm is more computationally efficient than the more general purpose solver and delivers results with equal accuracy. Refinements in initialization strategies and stopping criteria can improve the computational efficiency of the new algorithm.
机译:通过符号间干扰信道传输的数字数据的最大似然估计问题可以被视为二次约束二次程序(QCQP)。使用半定松弛(SDR)技术可以近似但有效地解决此问题,在该技术中,将二次目标和约束条件转换为矩阵变量的线性函数。最近,作者扩展了使用最大后验概率(MAP)估计的基本SDR技术,以将先验概率合并到位上。最终的估计器是一个软输入软输出均衡器,由于其指数复杂性,在真正的最佳MAP均衡(通过BCJR算法实现)不切实际的情况下,可用于迭代(涡轮)均衡。本文开发了一种使用障碍方法的自定义内点算法,以解决凸的扩展SDR问题。该自定义求解器比通用求解器在计算效率上更高,因为它可以利用均衡问题中固有的结构。提供了仿真实验,比较了新算法和通用代码(CVX)的运行时间。与更通用的求解器相比,新算法的计算效率更高,并且以相同的精度提供结果。初始化策略和停止标准的改进可以提高新算法的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号