首页> 外文期刊>Journal of Optimization Theory and Applications >Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems
【24h】

Decomposition-based Method for Sparse Semidefinite Relaxations of Polynomial Optimization Problems

机译:基于分解的多项式优化问题的半确定性松弛方法

获取原文
获取原文并翻译 | 示例

摘要

We consider polynomial optimization problems pervaded by a sparsity pattern. It has been shown in Lasserre (SIAM J. Optim. 17(3):822–843, 2006) and Waki et al. (SIAM J. Optim. 17(1):218–248, 2006) that the optimal solution of a polynomial programming problem with structured sparsity can be computed by solving a series of semidefinite relaxations that possess the same kind of sparsity. We aim at solving the former relaxations with a decomposition-based method, which partitions the relaxations according to their sparsity pattern. The decomposition-based method that we propose is an extension to semidefinite programming of the Benders decomposition for linear programs (Benders, Comput. Manag. Sci. 2(1):3–19, 2005).
机译:我们考虑稀疏模式普遍存在的多项式优化问题。它已经在Lasserre(SIAM J. Optim。17(3):822–843,2006)和Waki等人的论文中得到了证明。 (SIAM J. Optim。17(1):218–248,2006),可以通过解决一系列具有相同稀疏性的半定松弛来计算具有结构化稀疏性的多项式规划问题的最优解。我们旨在通过基于分解的方法解决前一种松弛,该方法根据松弛的稀疏模式对松弛进行划分。我们提出的基于分解的方法是对线性程序的Benders分解的半定规划的一种扩展(Benders,Comput。Manag。Sci。2(1):3-19,2005)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号