【24h】

FAULT DIAGNOSIS BASED ON INTELLIGENT INFORMATION PROCESSING TECHNOLOGY

机译:基于智能信息处理技术的故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a fault diagnosis method based on intelligent information processing technology. It first extracts the characteristics of the primary sample signals with wavelet transform, then optimizes the key characteristics to be input parameters of neural network with the genetic algorithm, and finally recognizes the state and classifies the characteristics with neural network. This method not, only effectively decreases the neural training time and neural calculation, but also enhances the correctness and reliability of the characteristic classification and fault diagnosis. The performance of the proposed method is proven by the bearing fault diagnosis experiment.
机译:提出了一种基于智能信息处理技术的故障诊断方法。首先利用小波变换提取原始样本信号的特征,然后利用遗传算法对关键特征进行优化,作为神经网络的输入参数,最后通过神经网络识别状态并对特征进行分类。该方法不仅有效减少了神经训练时间和神经计算量,而且提高了特征分类和故障诊断的正确性和可靠性。轴承故障诊断实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号