首页> 外文会议>1st BRICS Countries Congress on Computational Intelligence >Neural Network Used to Stator Winding Interturn Short-Circuit Fault Detection in an Induction Motor Driven by Frequency Converter
【24h】

Neural Network Used to Stator Winding Interturn Short-Circuit Fault Detection in an Induction Motor Driven by Frequency Converter

机译:神经网络在变频器驱动感应电动机定子绕组匝间短路故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work is the application of a Multilayer Perceptron Artificial Neural Network (MLP ANN) to detect early interturn short-circuit faults in a three-phase converter-fed induction motor. The quantity used to analyze the problem is the stator current or, more specifically, the harmonic content of its frequency spectrum, also called current signature. The analysis through the current signature is a non-invasive method and may be embedded in the frequency converter, what is a great advantage. The dataset used for training and validating the ANN is obtained using a test bench that allows applying different levels of interturn short-circuits in the machine. It is observed that the fault motor dataset and healthy motor dataset are difficult to separate, which demands a large computational effort to choose a proper MLP topology. The MLP is trained by two different algorithms (the classical error Back propagation - BP - and an adaptation of the newer Extreme Learning Machine - ELM) and the results are thoroughly explored, including after the application of a pruning method called CAPE. Then it is slightly compared with the results of a Self-Organized Map ANN [1] obtained by using the same dataset.
机译:这项工作是应用多层感知器人工神经网络(MLP ANN)来检测三相变频器供电的感应电动机中的早期匝间短路故障。用于分析问题的量是定子电流,或更具体地说,是其频谱的谐波含量,也称为电流信号。通过当前签名进行的分析是一种非侵入性方法,可以嵌入到变频器中,这是一个很大的优势。用于训练和验证ANN的数据集是通过一个测试台获得的,该测试台允许在机器中应用不同级别的匝间短路。可以看出,故障电机数据集和正常电机数据集很难分开,这需要大量的计算工作才能选择合适的MLP拓扑。 MLP由两种不同的算法训练(经典误差反向传播BP-和更新的极限学习机ELM的改编),并彻底探索了结果,包括在应用称为CAPE的修剪方法之后。然后,将其与使用相同数据集获得的自组织地图ANN [1]的结果稍作比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号