【24h】

Two Parallel Implementations of Ehrlich-Aberth Algorithm for Root-Finding of Polynomials on Multiple GPUs with OpenMP and MPI

机译:用OpenMP和MPI在多个GPU上多项式求根的Ehrlich-Aberth算法的两种并行实现

获取原文
获取原文并翻译 | 示例

摘要

Finding the roots of polynomials is a very important part of solving real-life problems but the higher the degree of the polynomials is, the less easy it becomes. In this paper, we present two different parallel algorithms of the Ehrlich-Aberth method to find roots of sparse and fully defined polynomials of high degrees. Both algorithms are based on CUDA technology to be implemented on multi-GPU computing platforms but each use different parallel paradigms: OpenMP or MPI. The experiments show a quasi-linear speedup by using up-to 4 GPU devices compared to 1 GPU to find the roots of polynomials of degree up-to 1.4 million. Moreover, other experiments show it is possible to find the roots of polynomials of degree up-to 5 million.
机译:找到多项式的根是解决现实生活中一个非常重要的部分,但是多项式的阶数越高,变得越不容易。在本文中,我们提出了两种不同的Ehrlich-Aberth方法并行算法,以找到稀疏根和完全定义的高阶多项式。两种算法都基于CUDA技术,可在多GPU计算平台上实现,但是每种算法都使用不同的并行范例:OpenMP或MPI。实验表明,与使用1个GPU相比,最多使用4个GPU设备来查找次数高达140万的多项式的根,从而实现了准线性加速。此外,其他实验表明,可以找到次数高达500万的多项式的根。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号