【24h】

Semantical Principles in the Modal Logic of Coalgebras

机译:代数模态逻辑中的语义原理

获取原文
获取原文并翻译 | 示例

摘要

Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.
机译:集合类别上的函子的Coalgebras包含过渡系统概念的许多表述,包括带标记的过渡系统,Kripke模型,Kripke框架和许多类型的自动机。本文提出了一种多模态语言,它是双仿真不变的,并且(在自然完整性条件下)表达能力足以表征双仿真之前的基础状态空间的元素。像Moss的余数逻辑一样,该理论可以应用于集合类别上的任意签名函子。此外,给出了获得特征公式所需的合取和析取的大小的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号