【24h】

A New Facial Expression Recognition Method Based on Geometric Alignment and LBP Features

机译:基于几何对齐和LBP特征的面部表情识别新方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic facial expression recognition has been drawn many attentions in both computer vision and artificial intelligence (AI) for the past decades. Although much progress has been made, facial expression recognition (FER) is still a challenging and interesting problem. In this paper, we propose a new FER system, which uses the active shape mode (ASM) algorithm to align the faces, then extracts local binary patterns (LBP) features and uses support vector machine (SVM) classifier to predict the facial emotion. Experiments on the Jaffe database show that the proposed method has a promising performance and increases the recognition rate by 5.2% compared to the method using Gabor features.
机译:在过去的几十年中,自动面部表情识别已在计算机视觉和人工智能(AI)中引起了很多关注。尽管已经取得了很大进展,但是面部表情识别(FER)仍然是一个充满挑战和有趣的问题。在本文中,我们提出了一种新的FER系统,该系统使用主动形状模式(ASM)算法对齐面部,然后提取局部二进制模式(LBP)特征并使用支持向量机(SVM)分类器来预测面部表情。在Jaffe数据库上进行的实验表明,与使用Gabor特征的方法相比,该方法具有良好的性能,识别率提高了5.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号