首页> 外文会议>16th workshop on biomedical natural language processing >Enhancing Automatic ICD-9-CM Code Assignment for Medical Texts with PubMed
【24h】

Enhancing Automatic ICD-9-CM Code Assignment for Medical Texts with PubMed

机译:使用PubMed增强医学文本的自动ICD-9-CM代码分配

获取原文
获取原文并翻译 | 示例

摘要

Assigning a standard ICD-9-CM code to disease symptoms in medical texts is an important task in the medical domain. Automating this process could greatly reduce the costs. However, the effectiveness of an automatic ICD-9-CM code classifier faces a serious problem, which can be triggered by unbalanced training data. Frequent diseases often have more training data, which helps its classification to perform better than that of an infrequent disease. However, a diseases frequency does not necessarily reflect its importance. To resolve this training data shortage problem, we propose to strategically draw data from PubMed to enrich the training data when there is such need. We validate our method on the CMC dataset, and the evaluation results indicate that our method can significantly improve the code assignment classifiers' performance at the macro-averaging level.
机译:为医学文本中的疾病症状分配标准的ICD-9-CM代码是医学领域的一项重要任务。使该过程自动化可以大大降低成本。但是,自动ICD-9-CM代码分类器的有效性面临一个严重的问题,该问题可能由训练数据不平衡而触发。常见疾病通常具有更多的训练数据,这有助于其分类比罕见疾病表现更好。但是,疾病的发生频率并不一定反映其重要性。为了解决此训练数据短缺的问题,我们建议从有需要的情况下策略性地从PubMed中提取数据以丰富训练数据。我们在CMC数据集上验证了我们的方法,评估结果表明,该方法可以在宏平均级别上显着提高代码分配分类器的性能。

著录项

  • 来源
  • 会议地点 Vancouver(CA)
  • 作者单位

    School of Information Sciences, University of Pittsburgh;

    School of Information Sciences, University of Pittsburgh;

    School of Information Sciences, University of Pittsburgh;

    School of Economics and Management, Nanjing University of Science and Technology;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号