【24h】

Reinforcement Learning Control for Water-Efficient Agricultural Irrigation

机译:节水农业灌溉的强化学习控制

获取原文
获取原文并翻译 | 示例

摘要

Modern sensor technologies, internet and advanced irrigation equipment allow a relative precise control of agricultural irrigation that leads to high water-use efficiency. However, the core control algorithms that make use of these technologies have not been well studied. In this work, a reinforcement learning based irrigation control technique is investigated. The delayed reward of crop yield is handled by the temporal difference technique. The learning process can be based on both off-line simulation and real data from sensors and crop yield. Neural network based fast models for soil water level and crop yield are developed to improve the scalability of learning. Simulations for various geographic locations and crop types show that the proposed method can significantly increase net return considering both crop yield and water expense.
机译:现代传感器技术,互联网和先进的灌溉设备可以相对精确地控制农业灌溉,从而提高了用水效率。但是,尚未充分研究利用这些技术的核心控制算法。在这项工作中,研究了基于强化学习的灌溉控制技术。作物产量的延迟报酬通过时差技术处理。学习过程可以基于离线模拟以及来自传感器和农作物产量的真实数据。开发了基于神经网络的土壤水位和作物产量的快速模型,以提高学习的可扩展性。对各种地理位置和农作物类型的仿真表明,考虑到农作物产量和水费,该方法可以显着提高净收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号