【24h】

When and What Music Will You Listen To? Fine-Grained Time-Aware Music Recommendation

机译:您什么时候听什么音乐?细粒度的时间感知音乐推荐

获取原文
获取原文并翻译 | 示例

摘要

Music recommendation which helps displaying proper songs to proper users, has attracted growing attention in recent years. Current music recommendation systems are facing two key challenges: (1) users' listening habits with respect to time haven't been well studied; (2) there are far less ratings than listening records in music providing systems. In this paper, we strive to address the above two challenges. We investigate when and what music will a user listen to, and we propose a Fine-grained Time-aware Music Recommendation (FTAMR) model. To be specific, we improve recommendation qualities from two sides: the user and the song. From the user's side, we study users' listening time-behavior in a fine-grained way and explore their short-term listening habits (e.g. in a day) and long-term listening habits (e.g. in several months); From the song's side, considering the sparsity of ratings and the characteristics (e.g., popularity) of each song, we define the asymmetric co-recommendation probability from a song to another, and cluster songs according to co-recommendation probabilities instead of similarities. Given users' listening records with time stamps, we make recommendation based on their listening habits and songs' co-recommendation probabilities. To validate the effectiveness of the proposed FTAMR model, we study the Last.fm data set and conduct extensive experiments. The results show that our approach can provide better recommendations.
机译:有助于向适当的用户显示适当的歌曲的音乐推荐近年来引起了越来越多的关注。当前的音乐推荐系统面临两个主要挑战:(1)尚未充分研究用户关于时间的收听习惯; (2)与音乐提供系统中的收听记录相比,收视率要低得多。在本文中,我们努力解决上述两个挑战。我们调查用户何时以及将听什么音乐,并提出了一种细粒度的时间感知音乐推荐(FTAMR)模型。具体而言,我们从用户和歌曲两方面提高了推荐质量。从用户的角度,我们以细粒度的方式研究用户的收听时间行为,并探讨他们的短期收听习惯(例如一天)和长期收听习惯(例如几个月);从歌曲的角度来看,考虑到评分的稀疏性和每首歌曲的特征(例如,流行度),我们定义了从一首歌曲到另一首歌曲的不对称共同推荐概率,并根据共同推荐概率而不是相似性对歌曲进行聚类。给定用户的收听记录和时间戳,我们根据他们的收听习惯和歌曲的共同推荐概率提出建议。为了验证所提出的FTAMR模型的有效性,我们研究了Last.fm数据集并进行了广泛的实验。结果表明,我们的方法可以提供更好的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号