【24h】

INFORMATION OBSERVED IN Ti-Lα,β AND Ti-Ll,η EMISSION LINES OF Ti AND ITS OXIDES

机译:Ti及其氧化物的Ti-Lα,β和Ti-Ll,η发射线观察到的信息

获取原文
获取原文并翻译 | 示例

摘要

X-rays originate from electronic transitions from valence bands (VB, bonding electron states) to inner-shell electron levels inform us of the energy states of the bonding electrons [1]. Thus, L-emissions of 3d transition metal elements, which range from 400 to 1,000 eV, are very important to assign the chemical states of those elements in compounds. La- and Lβ-emissions due to 3d_(5/2,3/2) →► 2p_(3/2) and 3d_(3/2) → 2p_(1/2) transitions, respectively, are suitable to probe valence states (bonding states). On the other hand, Ll- and Lη-emissions correspond to transitions from a shallow inner-shell level of 3_(S1/2) to 2p_(3/2) and 2p_(1/2) levels, respectively. Thus, Ll,η-lines can give us different information from that of La,β. Furthermore, charge state is also important to discuss the physical property because of the amount of 3d electrons closely related to magnetism and conductivity of 3d transition metal compounds. Figure 1 shows La,P- and Ll,η-emissions of metallic Ti, ε-TiO [2], and TiO_2 (rutile). These spectra were obtained from those bulk materials by using a soft-X-ray emission spectrometer attached to a scanning electron microscope [3]. The accelerating voltage was 5 kV. Spectral intensities are normalised at the peak height of the Ll-emission. In a simple ionic model, TiO_2 is considered as Ti~(4+)O_2~(2-) and cannot emit La,β-intensity because a Ti~(4+) ion does not have any 3d electrons. However, La,β-emissions are clearly observed. Thus, Ti atoms in TiO_2 are not pure Ti~(4+) ions via covalent bonding between Ti and O atoms. Intensity profiles of TiO_2 (rutile) and e-TiO are apparently different, reflecting different bonding states due to different crystal structures. The Ti atom is surrounded by six O atoms forming an octahedron in TiO_2, and surrounded by trigonal prismatic (six-fold coordination) and trigonal planar (three-fold coordination) arrangements of O atoms in ε-TiO [2]. Those intensity profiles should be compared with those of calculated Ti-3d component of density of state of valence bands. When discussing the relative position of those spectra, chemical shifts of Ti-2p level and band gap energies of those materials should be taken into account. Although information of chemical shift is important, it is difficult to deduce from different intensity profiles of La,β as seen in Fig. 1. The LI intensity profile is simply due to transitions between inner-shell levels. As seen in Fig. 1, the LI energy position of ε-TiO is almost the same as for metallic Ti. On the other hand, the LI of TiO_2 shows a shift to the higher energy side by about 0.7 eV compared to metallic Ti. As chemical shifts of core levels due to valence charge exhibit the same amount of shift [4], energy differences between core-levels do not show a chemical shift. Thus, the shift of Ll observed in Fig. 1 is interesting. By consulting a discussion on chemical shift in X-ray photoelectron spectroscopy, a shift of the Ll-line can be attributed to the relaxation energy of surroundings of the excited atom, which is due to a presence of a 3s hole in the final state. Thus, theoretical calculation on the binding energy of Ti- L3(2p_(3/2))- and Ti-Ml(3_(S1/2))-levels with a 3s hole were conducted for metallic Ti and TiO_2 by using the Wien2k code with a 3x3x3 supercell. The energy difference between Ti-L3 and Ti-Ml in TiO_3 is larger than that in metallic Ti by 0.64 eV. This value explains well the observed shift value of 0.7 eV. This core-hole effect in the final state is also important in inner-shell excitation electron energy-loss spectroscopy. As the effect originates from the screening of core-hole, the shift reflects dielectricity around the excited atom. Since ε-TiO should be a metal, it is reasonable that the LI energy positions of metallic Ti and s-TiO are almost the same. Shifts of other 3d transition metal elements in oxides will be also discussed. It should be noted that La,(3-intensities of metallic Ti and TiO_2 in Fig. 1, in which the spectral intensities are normalised to the peak height of the Ll-emission, are not so different. The number of 3 s electrons that can contribute to Ll-emission is the same for all Ti atoms, but the number of 3d electrons of a Ti atom can be different depending on the chemical bonding state. As La,β-emission originates from transitions of 3d electrons into the 2p core-hole states, those similar La,β-intensities of metallic Ti and TiO_2 can be attributed to similar d-electron numbers at the excited Ti atom with 2p hole. Thus, it is worth examining the distribution of 3d electrons around Ti atoms with and without 2p holes in metallic Ti and TiO_2 by theoretical calculation.
机译:X射线源于从价带(VB,键合电子态)到内壳电子能级的电子跃迁,它告诉我们键合电子的能态[1]。因此,3d过渡金属元素的L发射(范围为400至1,000 eV)对于指定化合物中这些元素的化学态非常重要。分别由3d_(5 / 2,3 / 2)→►2p_(3/2)和3d_(3/2)→2p_(1/2)跃迁引起的La和Lβ发射适合探测价态(键合状态)。另一方面,L1-和Lη-发射分别对应于从浅内壳水平3_(S1 / 2)到2p_(3/2)和2p_(1/2)的转变。因此,L1,η-线可以提供与La,β不同的信息。此外,由于3d电子的数量与3d过渡金属化合物的磁性和电导率密切相关,因此电荷状态对于讨论物理性质也很重要。图1显示了金属Ti,ε-TiO[2]和TiO_2(金红石)的La,P和Ll,η发射。这些光谱是通过使用附在扫描电子显微镜上的软X射线发射光谱仪从这些散装材料获得的[3]。加速电压为5kV。光谱强度在L1发射的峰高处归一化。在简单的离子模型中,TiO_2被认为是Ti〜(4+)O_2〜(2-),不能发射La,β强度,因为Ti〜(4+)离子没有3d电子。然而,清楚地观察到La,β-发射。因此,通过Ti和O原子之间的共价键,TiO_2中的Ti原子不是纯的Ti〜(4+)离子。 TiO_2(金红石)和e-TiO的强度分布明显不同,反映了由于不同晶体结构而导致的不同键合状态。 Ti原子被TiO_2中的六个O原子构成八面体包围,并被ε-TiO中O原子的三棱柱形(六倍配位)和三角平面(三倍配位)排列所围绕[2]。应将这些强度曲线与计算的价带状态密度的Ti-3d分量的强度曲线进行比较。在讨论这些光谱的相对位置时,应考虑Ti-2p能级的化学位移和这些材料的带隙能。尽管化学位移的信息很重要,但很难从La,β的不同强度分布中得出,如图1所示。LI强度分布仅是由于内壳能级之间的转变所致。如图1所示,ε-TiO的LI能级与金属Ti几乎相同。另一方面,与金属Ti相比,TiO_2的LI向高能侧移动了约0.7 eV。由于价键引起的核心能级的化学位移表现出相同的位移[4],因此核心能级之间的能量差不会显示化学位移。因此,在图1中观察到的L1的移位是有趣的。通过咨询有关X射线光电子能谱中化学位移的讨论,L1线的位移可归因于激发原子周围环境的弛豫能量,这是由于在最终状态下存在3s空穴所致。因此,使用Wien2k对金属Ti和TiO_2进行了具有3s孔的Ti-L3(2p_(3/2))-和Ti-Ml(3_(S1 / 2))能级的结合能的理论计算。 3x3x3超级单元进行编码。 TiO_3中的Ti-L3和Ti-Ml之间的能量差比金属Ti中的能量差大0.64 eV。该值很好地说明了观察到的0.7 eV的偏移值。最终状态下的核孔效应在内壳激发电子能量损失谱中也很重要。由于该效应源自核孔的屏蔽,因此该位移反映了受激发原子周围的介电常数。由于ε-TiO应该是金属,因此金属Ti和s-TiO的LI能级几乎相同是合理的。还将讨论氧化物中其他3d过渡金属元素的转变。应该注意的是,图1中的La,(金属Ti和TiO_2的3强度,光谱强度归一化为Ll发射的峰值高度)并没有太大差别。3s电子的数量可以促进L1发射的元素对于所有Ti原子都是相同的,但是Ti原子的3d电子的数量可以根据化学键的状态而不同。由于La,β发射源自3d电子向2p核的跃迁孔态,金属Ti和TiO_2的相似的La,β强度可归因于2p空穴的激发Ti原子处相似的d电子数,因此,值得研究3d电子在Ti原子周围的分布。通过理论计算,在金属Ti和TiO_2中没有2p孔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号