【24h】

Strong Entropy Concentration, Game Theory and Algorithmic Randomness

机译:强熵集中,博弈论和算法随机性

获取原文
获取原文并翻译 | 示例

摘要

We give a characterization of Maximum Entropy/Minimum Relative Entropy inference by providing two 'strong entropy concentration' theorems. These theorems unify and generalize Jaynes' 'concentration phenomenon' and Van Campenhout and Cover's 'conditional limit theorem'. The theorems characterize exactly in what sense a 'prior' distribution Q conditioned on a given constraint and the distribution P minimizing D(P||Q) over all P satisfying the constraint are 'close' to each other. We show how our theorems are related to 'universal models' for exponential families, thereby establishing a link with Rissanen's MDL/stochastic complexity. We then apply our theorems to establish the relationship (A) between entropy concentration and a game-theoretic characterization of Maximum Entropy Inference due to Topsφe and others; (B) between maximum entropy distributions and sequences that are random (in the sense of Martin-Loef/Kolmogorov) with respect to the given constraint. These two applications have strong implications for the use of Maximum Entropy distributions in sequential prediction tasks, both for the logarithmic loss and for general loss functions. We identify circumstances under which Maximum Entropy predictions are almost optimal.
机译:通过提供两个“强熵集中”定理,我们给出了最大熵/最小相对熵推断的特征。这些定理统一并概括了杰恩斯的“集中现象”和范坎彭豪特和盖夫的“条件极限定理”。这些定理精确地描述了在某种意义上以给定约束为条件的“先验”分布Q与在满足约束的所有P上使D(P || Q)最小的分布P彼此“接近”。我们展示了我们的定理如何与指数族的“通用模型”相关联,从而与Rissanen的MDL /随机复杂性建立了联系。然后,我们运用定理建立熵集中与Topsφe等引起的最大熵推论的博弈论特征之间的关系(A)。 (B)在最大熵分布和相对于给定约束为随机的序列(在Martin-Loef / Kolmogorov的意义上)之间。这两个应用都对顺序预测任务中使用最大熵分布有很大的影响,对数损失和一般损失函数均如此。我们确定最大熵预测几乎是最佳的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号