【24h】

MICROANALYSIS BY EPMA WITH A FIELD EMITTER SOURCE

机译:EPMA与场发射源的显微分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

X-ray microanalysis by EPMA has in recent years evolved in three main directions which each provide special challenges for both analysis protocol and hardware design. First, with improved hardware and analysis techniques it has become possible in many cases to reach some 10's ppm detection limits at high spatial resolution using LaB_6 sources. Analytical challenges of this type can be met only with high spectrometer reproducibility, excellent peak-to-background ratio high energy resolution and electron columns capable of providing 100's nA beam current closely regulated for several minutes collection time. Second, the entry of EPMA as an accepted metrology technique in-fab in the semiconductor industry for quantification of thin films and implants has required the development of a specialized low energy X-ray emission spectrometry (LEXES) involving absorption and emission models for many < 5 kV X-ray lines not normally used for quantitative microanalysis. However, due to the extremely low concentrations of some of the target species, EPMA instruments of this type operate at 10's uA of current and beam diameters > 10 μm. Third, there has been considerable interest in extending EPMA capabilities to ever-smaller activation volumes by using a field emission (FE) source, many of which can provide beam diameters < 100 nm also at low accelerating voltage. Effective use of such beam diameters for proper quantitative microanalysis requires improvements both to the hardware and to the quantification paradigm itself. Further, an effective general purpose FE-EPMA must also be able to operate at more conventional column conditions and high current modes in order to meet low detection limits as described in the first section above. Examples acquired with the Cameca SX Five FE instrument will be discussed. Analytical resolution (AR) in EPMA does not directly correspond to beam diameter, but is governed mainly by a combination of accelerating voltage and average atomic density of the matrix as may be understood by Monte Carlo modelling. To achieve AR in the 100 nm range for many substrates requires impact energies of only a few kV, and for many atomic species this energy is insufficient to excite the conventional higher-energy K-lines and one must instead quantify using lower-energy L- and M-lines. In this energy range (see LEXES) it may be necessary to deploy more sophisticated X-ray emission models in order to achieve effective quantification. Practical examples illustrating the SX Five FE analytical capabilities will be shown.
机译:近年来,EPMA进行的X射线微分析在三个主要方向发展,每个方向都对分析协议和硬件设计提出了特殊挑战。首先,借助改进的硬件和分析技术,在许多情况下,使用LaB_6信号源可以在高空间分辨率下达到约10 ppm的检测限。这种类型的分析挑战只能通过高分光光度计的重现性,出色的峰本比,高能量分辨率和能够在几分钟的采集时间内提供100纳安束流的电子柱来解决。其次,EPMA成为半导体行业中用于薄膜和植入物定量的一种公认的计量技术,要求开发专门的低能X射线发射光谱法(LEXES),其中涉及许多< 5 kV X射线线通常不用于定量微量分析。但是,由于某些目标物质的浓度极低,因此此类EPMA仪器在10uA的电流下工作且光束直径> 10μm。第三,人们非常关注通过使用场发射(FE)源将EPMA功能扩展到越来越小的激活量,其中许多源还可以在低加速电压下提供小于100 nm的光束直径。有效地使用这种光束直径进行适当的定量微量分析需要硬件和定量范例本身的改进。此外,有效的通用FE-EPMA还必须能够在更常规的色谱柱条件和高电流模式下运行,以满足上述第一部分所述的低检测限。将讨论使用Cameca SX Five FE仪器获得的示例。 EPMA中的分析分辨率(AR)不直接对应于光束直径,而是主要由加速电压和基质的平均原子密度的组合来控制,这可以通过蒙特卡洛建模来理解。为了使许多基材的AR达到100 nm范围,仅需要几kV的冲击能,而对于许多原子种类而言,该能量不足以激发传统的高能K线,因此必须使用低能L-线来量化和M线。在此能量范围内(请参阅LEXES),可能有必要部署更复杂的X射线发射模型以实现有效的量化。将显示说明SX的五种有限元分析功能的实际示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号