【24h】

Face Recognition Based on the Statistics Methods

机译:基于统计方法的人脸识别

获取原文

摘要

In many face recognition methods, the ones based on the statistics theory are more commonly used and proved to be effective. This paper introduces two of these methods: an improved method named weighted modular Two-dimensional Principal Component Analysis (WM-2DPCA) and Bayesian classifier. And then combine the advantages of these two methods and apply them to face recognition. Experimental results show that the combined method can be used successfully in face recognition, and also illustrate the effectiveness of the combination.
机译:在许多人脸识别方法中,基于统计理论的人脸识别方法更为常用并证明是有效的。本文介绍了这两种方法:一种称为加权模块化二维主成分分析(WM-2DPCA)的改进方法和贝叶斯分类器。然后结合这两种方法的优点,并将其应用于人脸识别。实验结果表明,该组合方法可以成功用于人脸识别,并且说明了组合的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号