首页> 外国专利> CASUALTY RECOGNITION METHOD AND SYSTEM BASED ON DEEP LEARNING IN CASUALTY GATHERING PLACE SCENE

CASUALTY RECOGNITION METHOD AND SYSTEM BASED ON DEEP LEARNING IN CASUALTY GATHERING PLACE SCENE

机译:基于深度学习的伤员聚集地场景伤员识别方法及系统

摘要

A casualty recognition method based on a deep-learning neural network. The casualty recognition method comprises the following steps: S10, acquiring at least one casualty picture in a casualty gathering place environment by means of a depth camera, and performing gathering to form a site data set of casualty pictures; S20, by means of data augmentation, generating an additional casualty picture of a smaller size for an original casualty picture captured at close range in the site data set, and associating the additional casualty picture with the original casualty picture and then storing the additional casualty picture in the site data set; and S30, inputting a site picture captured by the depth camera into a deep-learning-based neural network, so as to calculate and output the number of casualties in the site picture, wherein the neural network is trained using a pre-training data set and the site data set. Further provided is a casualty recognition system based on a deep-learning neural network. The system comprises a depth camera, a memory, and a processor, wherein the processor implements the method when executing instructions stored in the memory.
机译:一种基于深度学习神经网络的伤亡识别方法。伤员识别方法包括以下步骤:S10,通过深度相机在伤员聚集地环境中获取至少一张伤员照片,并进行采集以形成伤员照片的现场数据集;S20,通过数据增强,为现场数据集中近距离拍摄的原始伤亡图片生成较小尺寸的额外伤亡图片,并将额外的伤亡图片与原始伤亡图片相关联,然后将额外的伤亡图片存储在现场数据集中;S30,将深度相机拍摄的现场图片输入到基于深度学习的神经网络中,从而计算并输出现场图片中的伤亡人数,其中神经网络使用预训练数据集和现场数据集进行训练。进一步提供的是基于深度学习神经网络的伤亡识别系统。该系统包括深度相机、存储器和处理器,其中处理器在执行存储器中存储的指令时实现该方法。

著录项

  • 公开/公告号WO2023/231290A1;WO2023000231290A1;WO2023231290A1;WO2023231290

    专利类型

  • 公开/公告日2023-12-07

    原文格式PDF

  • 申请/专利权人 HARBIN INSTITUTE OF TECHNOLOGY SHENZHEN;

    申请/专利号CNCN2022/128628;CN202200000128628;CN2022128628W;WO2022CN128628

  • 发明设计人

    申请日2022-10-31

  • 分类号G06V40/10;

  • 国家

  • 入库时间 2024-06-15 00:07:54

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号