首页> 外国专利> PERSONALIZED RECOMMENDATION SYSTEM FOR MATCHING USER AND CONVERSATION PARTNER BASED ON INTEGRATION OF MACHINE LEARNING MODELS AND THE OPERATION METHOD THEREOF

PERSONALIZED RECOMMENDATION SYSTEM FOR MATCHING USER AND CONVERSATION PARTNER BASED ON INTEGRATION OF MACHINE LEARNING MODELS AND THE OPERATION METHOD THEREOF

机译:基于机器学习模型集成的个性化用户与对话伙伴匹配推荐系统及其操作方法

摘要

In the computer program stored in a computer-readable storage medium according to various embodiments of the present application, the computer program includes instructions for causing a processor of a server to perform the following steps, the steps being: through a first questionnaire, Performing preprocessing on first text data included in a response received from a user to extract and merge features of the first text data; Performing preprocessing on second text data included in responses received from a plurality of partners through a second survey to extract and merge features of the second text data; A plurality of sets of at least one topic model corresponding to each method through LDA, NMF, LSI, and BERTopic methods using the extracted and merged features of the first text data and features of the second text data. generating a topic model; generating a partner pool by extracting at least one partner having second text data that shares features and topic models of the first text data; Applying principal component analysis to the second text data of at least one partner included in the partner pool and the first text data of the user to reduce the dimensionality and calculate the degree of similarity between the user and the at least one partner; and selecting partners whose similarity exceeds a preset threshold to create a recommended partner pool.
机译:根据本申请的各种实施例,在存储在计算机可读存储介质中的计算机程序中,计算机程序包括用于使服务器的处理器执行以下步骤的指令,这些步骤是:通过第一问卷,对从用户接收的响应中包含的第一文本数据进行预处理,以提取和合并第一文本数据的特征;对通过第二次调查从多个合作伙伴收到的答复中包含的第二文本数据进行预处理,以提取和合并第二文本数据的特征;使用第一文本数据的提取和合并特征和第二文本数据的特征,通过LDA、NMF、LSI和BERTopic方法对应于每种方法的至少一个主题模型的多个集合。生成主题模型;通过提取至少一个具有第二个文本数据的合作伙伴来生成合作伙伴池,该合作伙伴共享第一个文本数据的特征和主题模型;对合作伙伴池中包含的至少一个合作伙伴的第二文本数据和用户的第一文本数据进行主成分分析,以降低维度并计算用户与至少一个合作伙伴之间的相似程度;选择相似度超过预设阈值的合作伙伴,创建推荐的合作伙伴池。

著录项

  • 公开/公告号KR1026003050000B1;KR2023102600305B1;KR102600305B1;KR102600305B

    专利类型

  • 公开/公告日2023-11-09

    原文格式PDF

  • 申请/专利权人 주식회사 커피챗;

    申请/专利号KR1020220129089;KR202200000129089A;KR20220129089A;KR20220129089

  • 发明设计人

    申请日2022-10-07

  • 分类号G06Q50/10;G06F16/906;G06N20;G06N3/02;

  • 国家

  • 入库时间 2024-06-15 00:06:41

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号