首页> 外国专利> RESIDUAL FITTING MECHANISM-BASED SIMPLIFIED DEEP FOREST REGRESSION SOFT MEASUREMENT METHOD FOR FURNACE GRATE FURNACE MSWI PROCESS DIOXIN EMISSION

RESIDUAL FITTING MECHANISM-BASED SIMPLIFIED DEEP FOREST REGRESSION SOFT MEASUREMENT METHOD FOR FURNACE GRATE FURNACE MSWI PROCESS DIOXIN EMISSION

机译:基于残差拟合机制的炉篦炉MSWI工艺二恶英排放简约深林回归软测量方法

摘要

Provided in the present invention is a residual fitting mechanism-based simplified deep forest regression soft measurement method for furnace grate furnace MSWI process dioxin emission. Toxic pollutant dioxin (DXN) generated in a solid waste incineration process is a key environment index which must be minimized and controlled. Carrying out rapid and accurate soft measurement on the DXN emission concentration is the to priority to reduce the discharge of this type of pollutants. The method comprises: firstly, performing feature selection on a high-dimensional process variable by using mutual information and a significance test; then, constructing a simplified deep forest regression (SDFR) algorithm to learn a nonlinear relationship between the selected process variable and the DXN emission concentration; finally, designing a gradient enhancement strategy on the basis of a residual fitting (REF) mechanism to improve the generalization performance of the layer-by-layer learning process. Compared with other methods, the present method is better in prediction precision and time consumption.
机译:本发明提供一种基于残差拟合机理的简化深林回归软测量方法,用于炉排炉MSWI工艺二恶英排放量。固体废物焚烧过程中产生的有毒污染物二恶英(DXN)是必须尽量减少和控制的关键环境指标。对德信排放浓度进行快速准确的软测量是减少此类污染物排放的首要任务。该方法包括:首先,利用互信息和显著性检验对高维过程变量进行特征选择;然后,构建简化的深林回归(SDFR)算法,学习所选过程变量与德信排放浓度之间的非线性关系;最后,基于残差拟合(REF)机制设计梯度增强策略,提高逐层学习过程的泛化性能。与其他方法相比,本方法在预测精度和耗时方面均有较好的性能。

著录项

  • 公开/公告号WO2023/165635A1;WO2023000165635A1;WO2023165635A1;WO2023165635

    专利类型

  • 公开/公告日2023-09-07

    原文格式PDF

  • 申请/专利权人 BEIJING UNIVERSITY OF TECHNOLOGY;

    申请/专利号CNCN2023/090771;CN202300000090771;CN2023090771W;WO2023CN90771

  • 发明设计人

    申请日2023-04-26

  • 分类号G06F30/27;

  • 国家

  • 入库时间 2024-06-15 00:04:27

相似文献

  • 专利
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号